ترغب بنشر مسار تعليمي؟ اضغط هنا

Doubly Reflected Backward SDEs Driven by G-Brownian Motion--a Monotone Approach

126   0   0.0 ( 0 )
 نشر من قبل Hanwu Li
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Hanwu Li




اسأل ChatGPT حول البحث

In this paper, we study the doubly reflected backward stochastic differential equations driven by G-Brownian motion. We show that the solution can be constructed by a family of penalized reflected G-BSDEs with a lower obstacle. The advantage of this construction is that the convergence sequence is monotone, which is helpful to establish the relation between doubly reflected G-BSDEs and double obstacle fully nonlinear partial differential equations.



قيم البحث

اقرأ أيضاً

169 - Hanwu Li , Shige Peng 2017
In this paper, we study the reflected solutions of one-dimensional backward stochastic differential equations driven by G-Brownian motion (RGBSDE for short). The reflection keeps the solution above a given stochastic process. In order to derive the u niqueness of reflected GBSDEs, we apply a martingale condition instead of the Skorohod condition. Similar to the classical case, we prove the existence by approximation via penalization.
106 - Xing Huang , Fen-Fen Yang 2020
Sufficient and necessary conditions are presented for the comparison theorem of path dependent $G$-SDEs. Different from the corresponding study in path independent $G$-SDEs, a probability method is applied to prove these results. Moreover, the results extend the ones in the linear expectation case.
128 - Shige Peng , Huilin Zhang 2015
In this paper, we build the equivalence between rough differential equations driven by the lifted $G$-Brownian motion and the corresponding Stratonovich type SDE through the Wong-Zakai approximation. The quasi-surely convergence rate of Wong-Zakai ap proximation to $G-$SDEs with mesh-size $frac{1}{n}$ in the $alpha$-Holder norm is estimated as $(frac{1}{n})^{frac12-}.$ As corollary, we obtain the quasi-surely continuity of the above RDEs with respect to uniform norm.
132 - Fenfen Yang 2018
We establish Harnack inequality and shift Harnack inequality for stochastic differential equation driven by $G$-Brownian motion. As applications, the uniqueness of invariant linear expectations and estimates on the $sup$-kernel are investigated, wher e the $sup$-kernel is introduced in this paper for the first time.
This paper is devoted to studying the properties of the exit times of stochastic differential equations driven by $G$-Brownian motion ($G$-SDEs). In particular, we prove that the exit times of $G$-SDEs has the quasi-continuity property. As an applica tion, we give a probabilistic representation for a large class of fully nonlinear elliptic equations with Dirichlet boundary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا