ترغب بنشر مسار تعليمي؟ اضغط هنا

Growing Action Spaces

121   0   0.0 ( 0 )
 نشر من قبل Gregory Farquhar
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In complex tasks, such as those with large combinatorial action spaces, random exploration may be too inefficient to achieve meaningful learning progress. In this work, we use a curriculum of progressively growing action spaces to accelerate learning. We assume the environment is out of our control, but that the agent may set an internal curriculum by initially restricting its action space. Our approach uses off-policy reinforcement learning to estimate optimal value functions for multiple action spaces simultaneously and efficiently transfers data, value estimates, and state representations from restricted action spaces to the full task. We show the efficacy of our approach in proof-of-concept control tasks and on challenging large-scale StarCraft micromanagement tasks with large, multi-agent action spaces.



قيم البحث

اقرأ أيضاً

251 - Sungsu Lim , Ajin Joseph , Lei Le 2018
Q-learning can be difficult to use in continuous action spaces, because an optimization has to be solved to find the maximal action for the action-values. A common strategy has been to restrict the functional form of the action-values to be concave i n the actions, to simplify the optimization. Such restrictions, however, can prevent learning accurate action-values. In this work, we propose a new policy search objective that facilitates using Q-learning and a framework to optimize this objective, called Actor-Expert. The Expert uses Q-learning to update the action-values towards optimal action-values. The Actor learns the maximal actions over time for these changing action-values. We develop a Cross Entropy Method (CEM) for the Actor, where such a global optimization approach facilitates use of generically parameterized action-values. This method - which we call Conditional CEM - iteratively concentrates density around maximal actions, conditioned on state. We prove that this algorithm tracks the expected CEM update, over states with changing action-values. We demonstrate in a toy environment that previous methods that restrict the action-value parameterization fail whereas Actor-Expert with a more general action-value parameterization succeeds. Finally, we demonstrate that Actor-Expert performs as well as or better than competitors on four benchmark continuous-action environments.
Value-based reinforcement learning (RL) methods like Q-learning have shown success in a variety of domains. One challenge in applying Q-learning to continuous-action RL problems, however, is the continuous action maximization (max-Q) required for opt imal Bellman backup. In this work, we develop CAQL, a (class of) algorithm(s) for continuous-action Q-learning that can use several plug-and-play optimizers for the max-Q problem. Leveraging recent optimization results for deep neural networks, we show that max-Q can be solved optimally using mixed-integer programming (MIP). When the Q-function representation has sufficient power, MIP-based optimization gives rise to better policies and is more robust than approximate methods (e.g., gradient ascent, cross-entropy search). We further develop several techniques to accelerate inference in CAQL, which despite their approximate nature, perform well. We compare CAQL with state-of-the-art RL algorithms on benchmark continuous-control problems that have different degrees of action constraints and show that CAQL outperforms policy-based methods in heavily constrained environments, often dramatically.
Many important real-world problems have action spaces that are high-dimensional, continuous or both, making full enumeration of all possible actions infeasible. Instead, only small subsets of actions can be sampled for the purpose of policy evaluatio n and improvement. In this paper, we propose a general framework to reason in a principled way about policy evaluation and improvement over such sampled action subsets. This sample-based policy iteration framework can in principle be applied to any reinforcement learning algorithm based upon policy iteration. Concretely, we propose Sampled MuZero, an extension of the MuZero algorithm that is able to learn in domains with arbitrarily complex action spaces by planning over sampled actions. We demonstrate this approach on the classical board game of Go and on two continuous control benchmark domains: DeepMind Control Suite and Real-World RL Suite.
Transfer learning (TL) is a promising way to improve the sample efficiency of reinforcement learning. However, how to efficiently transfer knowledge across tasks with different state-action spaces is investigated at an early stage. Most previous stud ies only addressed the inconsistency across different state spaces by learning a common feature space, without considering that similar actions in different action spaces of related tasks share similar semantics. In this paper, we propose a method to learning action embeddings by leveraging this idea, and a framework that learns both state embeddings and action embeddings to transfer policy across tasks with different state and action spaces. Our experimental results on various tasks show that the proposed method can not only learn informative action embeddings but accelerate policy learning.
141 - Siwei Chen , Xiao Ma , David Hsu 2020
It has been arduous to assess the progress of a policy learning algorithm in the domain of hierarchical task with high dimensional action space due to the lack of a commonly accepted benchmark. In this work, we propose a new light-weight benchmark ta sk called Diner Dash for evaluating the performance in a complicated task with high dimensional action space. In contrast to the traditional Atari games that only have a flat structure of goals and very few actions, the proposed benchmark task has a hierarchical task structure and size of 57 for the action space and hence can facilitate the development of policy learning in complicated tasks. On top of that, we introduce Decomposed Policy Graph Modelling (DPGM), an algorithm that combines both graph modelling and deep learning to allow explicit domain knowledge embedding and achieves significant improvement comparing to the baseline. In the experiments, we have shown the effectiveness of the domain knowledge injection via a specially designed imitation algorithm as well as results of other popular algorithms.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا