ﻻ يوجد ملخص باللغة العربية
Q-learning can be difficult to use in continuous action spaces, because an optimization has to be solved to find the maximal action for the action-values. A common strategy has been to restrict the functional form of the action-values to be concave in the actions, to simplify the optimization. Such restrictions, however, can prevent learning accurate action-values. In this work, we propose a new policy search objective that facilitates using Q-learning and a framework to optimize this objective, called Actor-Expert. The Expert uses Q-learning to update the action-values towards optimal action-values. The Actor learns the maximal actions over time for these changing action-values. We develop a Cross Entropy Method (CEM) for the Actor, where such a global optimization approach facilitates use of generically parameterized action-values. This method - which we call Conditional CEM - iteratively concentrates density around maximal actions, conditioned on state. We prove that this algorithm tracks the expected CEM update, over states with changing action-values. We demonstrate in a toy environment that previous methods that restrict the action-value parameterization fail whereas Actor-Expert with a more general action-value parameterization succeeds. Finally, we demonstrate that Actor-Expert performs as well as or better than competitors on four benchmark continuous-action environments.
Value-based reinforcement learning (RL) methods like Q-learning have shown success in a variety of domains. One challenge in applying Q-learning to continuous-action RL problems, however, is the continuous action maximization (max-Q) required for opt
Continuous control tasks in reinforcement learning are important because they provide an important framework for learning in high-dimensional state spaces with deceptive rewards, where the agent can easily become trapped into suboptimal solutions. On
Reinforcement learning (RL) is empirically successful in complex nonlinear Markov decision processes (MDPs) with continuous state spaces. By contrast, the majority of theoretical RL literature requires the MDP to satisfy some form of linear structure
In complex tasks, such as those with large combinatorial action spaces, random exploration may be too inefficient to achieve meaningful learning progress. In this work, we use a curriculum of progressively growing action spaces to accelerate learning
Model-free deep reinforcement learning (RL) algorithms have been demonstrated on a range of challenging decision making and control tasks. However, these methods typically suffer from two major challenges: very high sample complexity and brittle conv