ﻻ يوجد ملخص باللغة العربية
We study the electronic structure of the Re(0001) surface by means of ab-initio techniques based on the Fully Relativistic (FR) Density Functional Theory (DFT) and the Projector Augmented-Wave (PAW) method. We identify the main surface states and resonances and study in detail their energy dispersion along the main symmetry lines of the SBZ. Moreover, we discuss the effect of spin-orbit coupling on the energy splittings and the spin-polarization of the main surface states and resonances. Whenever possible, we compare the results with previously studied heavy metals surfaces. We find empty resonances, located below a gap similar to the L-gap of the (111) fcc surfaces, that have a downward dispersion and cross the Fermi level, similarly to the recently studied Os(0001) surface. Their spin polarization at the Fermi level is similar to that predicted by the Rashba model, but the usual level crossing at $bar{Gamma}$ is not found with our slab thickness. Moreover, for selected states, we follow the spin polarization along the high symmetry lines, discussing its behavior with respect to ${bf k}_{parallel}$, the wave-vector parallel to the surface.
We analyze the electronic structure of the Os(0001) surface by means of first-principle calculations based on Fully Relativistic (FR) Density Functional Theory (DFT) and a Projector Augmented-Wave (PAW) approach. We investigate surface states and res
Most spectroscopic methods for studying the electronic structure of metal surfaces have the disadvantage that either only occupied or only unoccupied states can be probed, and the signal is cut at the Fermi edge. This leads to significant uncertainti
We study Ni80Fe20-based permalloys with the relativistic spin-polarized Korringa-Kohn-Rostoker electronic structure method. Treating the compositional disorder with the coherent potential approximation, we investigate how the magnetocrystalline aniso
We report a detailed ab initio investigation on hydrogen bonding, geometry, electronic structure, and lattice dynamics of ice under a large high pressure range, including the ice X phase (55-380GPa), the previous theoretically proposed higher-pressur
We present a comprehensive ab initio investigation on Mg$_3$Bi$_2$, a promising Mg-ion battery anode material with high rate capacity. Through combined DFT (PBE, HSE06) and $G_0W_0$ electronic structure calculations, we find that Mg$_3$Bi$_2$ is like