ترغب بنشر مسار تعليمي؟ اضغط هنا

Ab initio investigation of hydrogen bonding and electronic structure of high-pressure phases of ice

288   0   0.0 ( 0 )
 نشر من قبل Renjun Xu
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a detailed ab initio investigation on hydrogen bonding, geometry, electronic structure, and lattice dynamics of ice under a large high pressure range, including the ice X phase (55-380GPa), the previous theoretically proposed higher-pressure phase ice XIIIM (Refs. 1-2) (380GPa), ice XV (a new structure we derived from ice XIIIM) (300-380GPa), as well as the ambient pressure low-temperature phase ice XI. Different from many other materials, the band gap of ice X is found to be increasing linearly with pressure from 55GPa up to 290GPa, the electronic density of states (DOS) shows that the valence bands have a tendency of red shift (move to lower energies) referring to the Fermi energy while the conduction bands have a blue shift (move to higher energies). This behavior is interpreted as the high pressure induced change of s-p charge transfers between hydrogen and oxygen. It is found that ice X exists in the pressure range from 75GPa to about 290GPa. Beyond 300GPa, a new hydrogen-bonding structure with 50% hydrogen atoms in symmetric positions in O-H-O bonds and the other half being asymmetric, ice XV, is identified. The physical mechanism for this broken symmetry in hydrogen bonding is revealed.



قيم البحث

اقرأ أيضاً

Understanding the behavior of molecular systems under pressure is a fundamental problem in condensed matter physics. In the case of nitrogen, the determination of the phase diagram and in particular of the melting line, are largely open problems. Two independent experiments have reported the presence of a maximum in the nitrogen melting curve, below 90 GPa, however the position and the interpretation of the origin of such maximum differ. By means of ab initio molecular dynamics simulations based on density functional theory and thermodynamic integration techniques, we have determined the phase diagram of nitrogen in the range between 20 and 100 GPa. We find a maximum in the melting line, related to a transformation in the liquid, from molecular N_2 to polymeric nitrogen accompanied by an insulator-to-metal transition.
We investigated the structural and dynamical properties of a tetrahedrally coordinated crystalline ice from first principles based on density functional theory within the generalized gradient approximation with the projected augmented wave method. Fi rst, we report the structural behaviour of ice at finite temperatures based on the analysis of radial distribution functions obtained by molecular dynamics simulations. The results show how the ordering of the hydrogen bonding breaks down in the tetrahedral network of ice with entropy increase in agreement with the neutron diffraction data. We also calculated the phonon spectra of ice in a 3x1x1 supercell by using the direct method. So far, due to the direct method used in this calculation, the phonon spectra is obtained without taking into account the effect of polarization arising from dipole-dipole interactions of water molecules which is expected to yield the splitting of longitudinal and transverse optic modes at the Gamma-point. The calculated longitudinal acoustic velocities from the initial slopes of the acoustic mode is in a reasonable agreement with the neutron scatering data. The analysis of the vibrational density of states shows the existence of a boson peak at low energy of translational region a characteristic common to amorphous systems.
229 - Andrew Shamp , Eva Zurek 2015
Evolutionary structure searches predict three new phases of iodine polyhydrides stable under pressure. Insulating P1-H5I, consisting of zigzag chains of HI (delta+)and H2(delta-) molecules, is stable between 30-90 GPa. Cmcm-H2I and P6/mmm-H4I are fou nd on the 100, 150 and 200 GPa convex hulls. These two phases are good metals, even at 1 atm, because they consist of monoatomic lattices of iodine. At 100 GPa the Tc of H2I and H4I are estimated to be 7.8 and 17.5 K, respectively. The increase in Tc relative to elemental iodine results from a larger omega-log from the light mass of hydrogen, and an enhanced lambda from modes containing H/I and H/H vibrations.
We study the electronic structure of the Re(0001) surface by means of ab-initio techniques based on the Fully Relativistic (FR) Density Functional Theory (DFT) and the Projector Augmented-Wave (PAW) method. We identify the main surface states and res onances and study in detail their energy dispersion along the main symmetry lines of the SBZ. Moreover, we discuss the effect of spin-orbit coupling on the energy splittings and the spin-polarization of the main surface states and resonances. Whenever possible, we compare the results with previously studied heavy metals surfaces. We find empty resonances, located below a gap similar to the L-gap of the (111) fcc surfaces, that have a downward dispersion and cross the Fermi level, similarly to the recently studied Os(0001) surface. Their spin polarization at the Fermi level is similar to that predicted by the Rashba model, but the usual level crossing at $bar{Gamma}$ is not found with our slab thickness. Moreover, for selected states, we follow the spin polarization along the high symmetry lines, discussing its behavior with respect to ${bf k}_{parallel}$, the wave-vector parallel to the surface.
The simulation of transmission electron microscopy (TEM) images or diffraction patterns is often required to interpret their contrast and extract specimen features. This is especially true for high-resolution phase-contrast imaging of materials, but electron scattering simulations based on atomistic models are widely used in materials science and structural biology. Since electron scattering is dominated by the nuclear cores, the scattering potential is typically described by the widely applied independent atom model. This approximation is fast and fairly accurate, especially for scanning TEM (STEM) annular dark-field contrast, but it completely neglects valence bonding and its effect on the transmitting electrons. However, an emerging trend in electron microscopy is to use new instrumentation and methods to extract the maximum amount of information from each electron. This is evident in the increasing popularity of techniques such as 4D-STEM combined with ptychography in materials science, and cryogenic microcrystal electron diffraction in structural biology, where subtle differences in the scattering potential may be both measurable and contain additional insights. Thus, there is increasing interest in electron scattering simulations based on electrostatic potentials obtained from first principles, mainly via density functional theory, which was previously mainly required for holography. In this Review, we discuss the motivation and basis for these developments, survey the pioneering work that has been published thus far, and give our outlook for the future. We argue that a physically better justified $textit{ab initio}$ description of the scattering potential is both useful and viable for an increasing number of systems, and we expect such simulations to steadily gain in popularity and importance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا