ﻻ يوجد ملخص باللغة العربية
A coherently driven Kerr optical cavity is able to convert a continuous-wave laser to a sequence of ultrashort soliton pulses, enabling the generation of broadband and mode-locked frequency combs. Kerr cavity solitons are balanced through an energy exchange with the driving pump field. Improving the energy conversion efficiency from the pump to the soliton is of great significance for practical applications, but remains an outstanding challenge due to a limited temporal overlap between the soliton and the pump. Here, we report the discovery of temporal Kerr solitons in mutually coupled cavities instead of a traditional single cavity. We propose a strategy for breaking the limitation of pump-to-soliton energy conversion, and connect the underlying mechanism to impedance matching in radiofrequency electronic circuits. With macro optical fiber ring cavities which share the same physical model as miniature optical microresonators, we demonstrate nearly one-order improvement of the efficiency. The results pave the way towards super-efficient soliton microcombs based on optical microresonators with ultra-high quality factors.
Temporal solitons in driven microresonator, fiber-resonator, and bulk enhancement cavities enable attractive optical sources for spectroscopy, communications, and metrology. Here we present theoretical and experimental observations of a new class of
We probe the physical mechanism behind the known phenomenon of power synchronization of two diode lasers that are mutually coupled via their delayed optical fields. In a diode laser, the amplitude and the phase of the optical field are coupled by the
Kerr optical frequency combs generated in a coherently driven Kerr nonlinear resonator has the potential for a wide range of applications. However, in a single cavity which is a widely adopted configuration for Kerr optical frequency combs generation
Frequency combs have become a prominent research area in optics. Of particular interest as integrated comb technology are chip-scale sources, such as semiconductor lasers and microresonators, which consist of resonators embedding a nonlinear medium e
We demonstrate temporal group delays in coherently-coupled high-Q multi-cavity photonic crystals, in an all-optical analogue to electromagnetically induced transparency. We report deterministic control of the group delay up to 4x the single cavity li