ﻻ يوجد ملخص باللغة العربية
We optimize the third-generation gravitational-wave detector to maximize the range to detect core-collapse supernovae. Based on three-dimensional simulations for core-collapse and the corresponding gravitational-wave waveform emitted, the corresponding detection range for these waveforms is limited to within our galaxy even in the era of third-generation detectors. The corresponding event rate is two per century. We find from the waveforms that to detect core-collapse supernovae with an event rate of one per year, the gravitational-wave detectors need a strain sensitivity of 3$times10^{-27}~$Hz$^{-1/2}$ in a frequency range from 100~Hz to 1500~Hz. We also explore detector configurations technologically beyond the scope of third-generation detectors. We find with these improvements, the event rate for gravitational-wave observations from CCSN is still low, but is improved to one in twenty years.
We discuss the prospects of gravitational lensing of gravitational waves (GWs) coming from core-collapse supernovae (CCSN). As the CCSN GW signal can only be detected from within our own Galaxy and the local group by current and upcoming ground-based
We present results from a search for gravitational-wave bursts coincident with a set of two core-collapse supernovae observed between 2007 and 2011. We employ data from the Laser Interferometer Gravitational-wave Observatory (LIGO), the Virgo gravita
The observation of gravitational wave signals from binary black hole mergers has established the field of gravitational wave astronomy. It is expected that future networks of gravitational wave detectors will possess great potential in probing variou
Rapid localization of gravitational-wave events is important for the success of the multi-messenger observations. The forthcoming improvements and constructions of gravitational-wave detectors will enable detecting and localizing compact-binary coale
Strong gravitational lensing is a gravitational wave (GW) propagation effect that influences the inferred GW source parameters and the cosmological environment. Identifying strongly-lensed GW images is challenging as waveform amplitude magnification