ﻻ يوجد ملخص باللغة العربية
Radio bursts from the solar corona can provide clues to forecast space weather hazards. After recent technology advancements, regular monitoring of radio bursts has increased and large observational data sets are produced. Hence, manual identification and classification of them is a challenging task. In this paper, we describe an algorithm to automatically identify radio bursts from dynamic solar radio spectrograms using a novel statistical method. We used e-CALLISTO radio spectrometer data observed at Gauribidanur observatory near Bangalore in India during 2013 - 2014. We have studied the classifier performance using the receiver operating characteristics. Further, we studied type III bursts observed in the year 2014 and found that $75%$ of the observed bursts were below 200 MHz. Our analysis shows that the positions of the flare sites which are associated with the type III bursts with upper-frequency cut-off $gtrsim 200$ MHz originate close to the solar disk center
We have performed a statistical study of $152$ Type III radio bursts observed by Solar TErrestrial RElations Observatory (STEREO)/Waves between May 2007 and February 2013. We have investigated the flux density between $125$kHz and $16$MHz. Both high-
Radio waves are strongly scattered in the solar wind, so that their apparent sources seem to be considerably larger and shifted than the actual ones. Since the scattering depends on the spectrum of density turbulence, better understanding of the radi
The recent ALMA DSHARP survey provided illuminating results on the diversity of substructures in planet forming disks. These substructures trace pebble-sized grains accumulated at local pressure maxima, possibly due to planet-disk interactions or oth
The early evolution of protostellar disks with metallicities in the $Z=1.0-0.01~Z_odot$ range was studied with a particular emphasis on the strength of gravitational instability and the nature of protostellar accretion in low-metallicity systems. Num
Nitrogen chemistry in protoplanetary disks and the freeze-out on dust particles is key to understand the formation of nitrogen bearing species in early solar system analogs. So far, ammonia has not been detected beyond the snowline in protoplanetary