ترغب بنشر مسار تعليمي؟ اضغط هنا

Statistical Survey of Type III Radio Bursts at Long Wavelengths Observed by the Solar TErrestrial RElations Observatory (STEREO)/Waves Instruments: Radio Flux Density Variations with Frequency

156   0   0.0 ( 0 )
 نشر من قبل Eduard P. Kontar
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have performed a statistical study of $152$ Type III radio bursts observed by Solar TErrestrial RElations Observatory (STEREO)/Waves between May 2007 and February 2013. We have investigated the flux density between $125$kHz and $16$MHz. Both high- and low-frequency cutoffs have been observed in $60,%$ of events suggesting an important role of propagation. As already reported by previous authors, we observed that the maximum flux density occurs at $1$MHz on both spacecraft. We have developed a simplified analytical model of the flux density as a function of radial distance and compared it to the STEREO/Waves data.



قيم البحث

اقرأ أيضاً

Radio waves are strongly scattered in the solar wind, so that their apparent sources seem to be considerably larger and shifted than the actual ones. Since the scattering depends on the spectrum of density turbulence, better understanding of the radi o wave propagation provides indirect information on the relative density fluctuations $epsilon=langledelta nrangle/langle nrangle$ at the effective turbulence scale length. Here, we have analyzed 30 type III bursts detected by Parker Solar Probe (PSP). For the first time, we have retrieved type III burst decay times $tau_{rm{d}}$ between 1 MHz and 10 MHz thanks to an unparalleled temporal resolution of PSP. We observed a significant deviation in a power-law slope for frequencies above 1 MHz when compared to previous measurements below 1 MHz by the twin-spacecraft Solar TErrestrial RElations Observatory (STEREO) mission. We note that altitudes of radio bursts generated at 1 MHz roughly coincide with an expected location of the Alfv{e}n point, where the solar wind becomes super-Alfv{e}nic. By comparing PSP observations and Monte Carlo simulations, we predict relative density fluctuations $epsilon$ at the effective turbulence scale length at radial distances between 2.5$R_odot$ and 14$R_odot$ to range from $0.22$ and $0.09$. Finally, we calculated relative density fluctuations $epsilon$ measured in situ by PSP at a radial distance from the Sun of $35.7$~$R_odot$ during the perihelion #1, and the perihelion #2 to be $0.07$ and $0.06$, respectively. It is in a very good agreement with previous STEREO predictions ($epsilon=0.06-0.07$) obtained by remote measurements of radio sources generated at this radial distance.
The Rosse Solar-Terrestrial Observatory (RSTO; www.rosseobservatory.ie) was established at Birr Castle, Co. Offaly, Ireland (53 0538.9, 7 5512.7) in 2010 to study solar radio bursts and the response of the Earths ionosphere and geomagnetic field. To date, three Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO) spectrometers have been installed, with the capability of observing in the frequency range 10-870 MHz. The receivers are fed simultaneously by biconical and log-periodic antennas. Nominally, frequency spectra in the range 10-400 MHz are obtained with 4 sweeps per second over 600 channels. Here, we describe the RSTO solar radio spectrometer set-up, and present dynamic spectra of a sample of Type II, III and IV radio bursts. In particular, we describe fine-scale structure observed in Type II bursts, including band splitting and rapidly varying herringbone features.
New measurements using radio and plasma-wave instruments in interplanetary space have shown that nanometer-scale dust, or nanodust, is a significant contributor to the total mass in interplanetary space. Better measurements of nanodust will allow us to determine where it comes from and the extent to which it interacts with the solar wind. When one of these nanodust grains impacts a spacecraft, it creates an expanding plasma cloud, which perturbs the photoelectron currents. This leads to a voltage pulse between the spacecraft body and the antenna. Nanodust has a high charge/mass ratio, and therefore can be accelerated by the interplanetary magnetic field to speeds up to the speed of the solar wind: significantly faster than the Keplerian orbital speeds of heavier dust. The amplitude of the signal induced by a dust grain grows much more strongly with speed than with mass of the dust particle. As a result, nanodust can produce a strong signal, despite their low mass. The WAVES instruments on the twin Solar TErrestrial RElations Observatory spacecraft have observed interplanetary nanodust particles since shortly after their launch in 2006. After describing a new and improved analysis of the last five years of STEREO/WAVES Low Frequency Receiver data, a statistical survey of the nanodust characteristics, namely the rise time of the pulse voltage and the flux of nanodust, is presented. Agreement with previous measurements and interplanetary dust models is shown. The temporal variations of the nanodust flux are also discussed.
The Sun is an active source of radio emission which is often associated with the acceleration of electrons arising from processes such as solar flares and coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), numerous solar S bursts (wh ere S stands for short) and storms of Type III radio bursts have been observed, that are not directly relates to flares and CMEs. Here, we expand our understanding on the spectral characteristic of these two different types of radio bursts based on observations from the Low Frequency Array (LOFAR). On 9 July 2013, over 3000 solar S bursts accompanied by over 800 Type III radio bursts were observed over a time period of ~8 hours. The characteristics of Type III radio bursts are consistent to previous studies, while S bursts show narrow bandwidths, durations and drift rates of about 1/2 the drift rate of Type III bursts. Type III bursts and solar S bursts occur in a region in the corona where plasma emission is the dominant emission mechanism as determined by data constrained density and magnetic field models.
167 - H. Schmitz , D. Tsiklauri 2013
Extensive particle-in-cell simulations of fast electron beams injected in a background magnetised plasma with a decreasing density profile were carried out. These simulations were intended to further shed light on a newly proposed mechanism for the g eneration of electromagnetic waves in type III solar radio bursts [D. Tsiklauri, Phys. Plasmas, 18, 052903 (2011)]. The numerical simulations were carried out using different density profiles and fast electron distribution functions. It is shown that electromagnetic L and R modes are excited by the transverse current, initially imposed on the system. In the course of the simulations no further interaction of the electron beam with the background plasma could be observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا