ترغب بنشر مسار تعليمي؟ اضغط هنا

Hints of a Population of Solar System Analog Planets from ALMA

321   0   0.0 ( 0 )
 نشر من قبل Deryl Long
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent ALMA DSHARP survey provided illuminating results on the diversity of substructures in planet forming disks. These substructures trace pebble-sized grains accumulated at local pressure maxima, possibly due to planet-disk interactions or other planet formation processes. DSHARP sources are heavily biased to large and massive disks that only represent the high (dust flux) tail end of the disk population. Thus it is unclear whether similar substructures and corresponding physical processes also occur in the majority of disks which are fainter and more compact. Here we explore the presence and characteristics of features in a compact disk around GQ Lup A, the effective radius of which is 1.5 to 10 times smaller than those of DSHARP disks. We present our analysis of ALMA 1.3mm continuum observations of the GQ Lup system. By fitting visibility profiles of the continuum emission, we find substructures including a gap at ~ 10 au. The compact disk around GQ Lup exhibits similar substructures to those in the DSHARP sample, suggesting that mechanisms of trapping pebble-sized grains are at work in small disks as well. Characteristics of the feature at ~ 10 au, if due to a hidden planet, are evidence of planet formation at Saturnian distances. Our results hint at a rich world of substructures to be identified within the common population of compact disks, and subsequently a population of solar system analogs within these disks. Such study is critical to understanding the formation mechanisms and planet populations in the majority of protoplanetary disks.



قيم البحث

اقرأ أيضاً

Glycine (NH2CH2COOH) is the simplest amino acid relevant for life. Its detection in the interstellar medium is key to understand the formation mechanisms of pre-biotic molecules and their subsequent delivery onto planetary systems. Glycine has extens ively been searched for toward hot molecular cores, although these studies did not yield any firm detection. In contrast to hot cores, low-mass star forming regions, and in particular their earliest stages represented by cold pre-stellar cores, may be better suited for the detection of glycine as well as more relevant for the study of pre-biotic chemistry in young Solar System analogs. We present 1D spherically symmetric radiative transfer calculations of the glycine emission expected to arise from the low-mass pre-stellar core L1544. Water vapour has recently been reported toward this core, indicating that a small fraction of the grain mantles in L1544 (~0.5%) has been injected into the gas phase. Assuming that glycine is photo-desorbed together with water in L1544, and considering a solid abundance of glycine on ices of ~1E-4 with respect to water, our calculations reveal that several glycine lines between 67 GHz and 80 GHz have peak intensities larger than 10 mK. These results show for the first time that glycine could reach detectable levels in cold objects such as L1544. This opens up the possibility to detect glycine, and other pre-biotic species, at the coldest and earliest stages in the formation of Solar-type systems with near-future instrumentation such as the Band 2 receivers of ALMA.
77 - Luis A. Zapata 2020
We present sensitive and high angular resolution ($sim$0.2-0.3$$) (sub)millimeter (230 and 345 GHz) continuum and CO(2$-$1)/CO(3$-$2) line archive observations of the disk star system in UX Tauri carried out with ALMA (The Atacama Large Millimeter/Su bmillimeter Array). These observations reveal the gas and dusty disk surrounding the young star UX Tauri A with a large signal-to-noise ratio ($>$400 in the continuum and $>$50 in the line), and for the first time is detected the molecular gas emission associated with the disk of UX Tauri C (with a size for the disk of $<$56 au). No (sub)millimeter continuum emission is detected at 5$sigma$-level (0.2 mJy at 0.85 mm) associated with UX Tauri C. For the component UX Tauri C, we estimate a dust disk mass of $leq$ 0.05 M$_oplus$. Additionally, we report a strong tidal disk interaction between both disks UX Tauri A/C, separated 360 au in projected distance. The CO line observations reveal marked spiral arms in the disk of UX Tauri A and an extended redshifted stream of gas associated with the UX Tauri C disk. No spiral arms are observed in the dust continuum emission of UX Tauri A. Assuming a Keplerian rotation we estimate the enclosed masses (disk$+$star) from their radial velocities in 1.4 $pm$ 0.6 M$_odot$ for UX Tauri A, and 70 $pm$ 30 / $sin i$ Jupiter masses for UX Tauri C (the latter coincides with the mass upper limit value for a brown dwarf). The observational evidence presented here lead us to propose that UX Tauri C is having a close approach of a possible wide, evolving and eccentric orbit around the disk of UX Tauri A causing the formation of spiral arms and the stream of molecular gas falling towards UX Tauri C.
We have observed the Class I protostar L1489 IRS with the Atacama Millimeter/submillimeter Array (ALMA) in Band 6. The C$^{18}$O $J=$2-1 line emission shows flattened and non-axisymmetric structures in the same direction as its velocity gradient due to rotation. We discovered that the C$^{18}$O emission shows dips at a radius of ~200-300 au while the 1.3 mm continuum emission extends smoothly up to r~400 au. At the radius of the C$^{18}$O dips, the rotational axis of the outer portion appears to be tilted by ~15 degrees from that of the inner component. Both the inner and outer components with respect to the C$^{18}$O dips exhibit the $r^{-0.5}$ Keplerian rotation profiles until r~600 au. These results not only indicate that a Keplerian disk extends up to ~600 au but also that the disk is warped. We constructed a three dimensional warped disk model rotating at the Keplerian velocity, and demonstrated that the warped disk model reproduces main observed features in the velocity channel maps and the PV diagrams. Such a warped disk system can form by mass accretion from a misaligned envelope. We also discuss a possible disk evolution scenario based on comparisons of disk radii and masses between Class I and Class II sources.
Protoplanetary disk surveys by the Atacama Large Millimeter/sub-millimeter Array (ALMA) are now probing a range of environmental conditions, from low-mass star-forming regions like Lupus to massive OB clusters like $sigma$ Orionis. Here we conduct an ALMA survey of protoplanetary disks in $lambda$ Orionis, a ~5 Myr old OB cluster in Orion, with dust mass sensitivities comparable to the surveys of nearby regions (~0.4 $M_oplus$). We assess how massive OB stars impact planet formation, in particular from the supernova that may have occurred ~1 Myr ago in the core of $lambda$ Orionis; studying these effects is important as most planetary systems, including our Solar System, are likely born in cluster environments. We find that the effects of massive stars, in the form of pre-supernova feedback and/or a supernova itself, do not appear to significantly reduce the available planet-forming material otherwise expected at the evolved age of $lambda$ Orionis. We also compare a lingering massive outlier disk in $lambda$ Orionis to similar systems in other evolved regions, hypothesizing that these outliers host companions in their inner disks that suppress disk dispersal to extend the lifetimes of their outer primordial disks. We conclude with numerous avenues for future work, highlighting how $lambda$ Orionis still has much to teach us about perhaps one of the most common types of planet-forming environments in the Galaxy.
Context: The complex system HD 100453 AB with a ring-like circumprimary disk and two spiral arms, one of which is pointing to the secondary, is a good laboratory to test spiral formation theories. Aims: To quantify the interaction of HD 100453 B with the circumprimary disk. Methods: Using ALMA band 6 dust continuum and CO isotopologue observations we study the HD 100453 AB system with a spatial resolution of 0.09 x 0.17 at 234 GHz. We use SPH simulations and orbital fitting to investigate the tidal influence of the companion on the disk. Results: We resolve the continuum emission around HD 100453 A into a disk between 0.22 and 0.40 with an inclination of 29.5 deg. and a position angle of 151.0 deg., an unresolved inner disk, and excess mm emission cospatial with the northern spiral arm which was previously detected using scattered light observations. We also detect CO emission from 7 au (well within the disk cavity) out to 1.10, i.e., overlapping with HD 100453 B at least in projection. The outer CO disk PA and inclination differ by up to 10 deg. from the values found for the inner CO disk and the dust continuum emission, which we interpret as due to gravitational interaction with HD 100453 B. Both the spatial extent of the CO disk and the detection of mm emission at the same location as the northern spiral arm are in disagreement with the previously proposed near co-planar orbit of HD 100453 B. Conclusions: We conclude that HD 100453 B has an orbit that is significantly misaligned with the circumprimary disk. Because it is unclear whether such an orbit can explain the observed system geometry we highlight an alternative scenario that explains all detected disk features where another, (yet) undetected, low mass close companion within the disk cavity, shepherds a misaligned inner disk whose slowly precessing shadows excite the spiral arms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا