ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlation length in random MPS and PEPS

94   0   0.0 ( 0 )
 نشر من قبل C\\'ecilia Lancien
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Tensor network states are used extensively as a mathematically convenient description of physically relevant states of many-body quantum systems. Those built on regular lattices, i.e. matrix product states (MPS) in dimension 1 and projected entangled pair states (PEPS) in dimension 2 or higher, are of particular interest in condensed matter physics. The general goal of this work is to characterize which features of MPS and PEPS are generic and which are, on the contrary, exceptional. This problem can be rephrased as follows: given an MPS or PEPS sampled at random, what are the features that it displays with either high or low probability? One property which we are particularly interested in is that of having either rapidly decaying or long-range correlations. In a nutshell, our main result is that translation-invariant MPS and PEPS typically exhibit exponential decay of correlations at a high rate. We have two distinct ways of getting to this conclusion, depending on the dimensional regime under consideration. Both yield intermediate results which are of independent interest, namely: the parent Hamiltonian and the transfer operator of such MPS and PEPS typically have a large spectral gap. In all these statements, our aim is to get a quantitative estimate of the considered quantity (generic correlation length or spectral gap), which has the best possible dependency on the physical and bond dimensions of the random MPS or PEPS.


قيم البحث

اقرأ أيضاً

The projected entangled pair state (PEPS) representation of quantum states on two-dimensional lattices induces an entanglement based hierarchy in state space. We show that the lowest levels of this hierarchy exhibit an enormously rich structure inclu ding states with critical and topological properties as well as resonating valence bond states. We prove, in particular, that coheren
We study the realization of anyon-permuting symmetries of topological phases on the lattice using tensor networks. Working on the virtual level of a projected entangled pair state, we find matrix product operators (MPOs) that realize all unitary topo logical symmetries for the toric and color codes. These operators act as domain walls that enact the symmetry transformation on anyons as they cross. By considering open boundary conditions for these domain wall MPOs, we show how to introduce symmetry twists and defect lines into the state.
198 - Ramis Movassagh 2018
One-parameter interpolations between any two unitary matrices (e.g., quantum gates) $U_1$ and $U_2$ along efficient paths contained in the unitary group are constructed. Motivated by applications, we propose the continuous unitary path $U(theta)$ obt ained from the QR-factorization [ U(theta)R(theta)=(1-theta)A+theta B, ] where $U_1 R_1=A$ and $U_2 R_2=B$ are the QR-factorizations of $A$ and $B$, and $U(theta)$ is a unitary for all $theta$ with $U(0)=U_1$ and $U(1)=U_2$. The QR-algorithm is modified to, instead of $U(theta)$, output a matrix whose columns are proportional to the corresponding columns of $U(theta)$ and whose entries are polynomial or rational functions of $theta$. By an extension of the Berlekamp-Welch algorithm we show that rational functions can be efficiently and exactly interpolated with respect to $theta$. We then construct probability distributions over unitaries that are arbitrarily close to the Haar measure. Demonstration of computational advantages of NISQ over classical computers is an imperative near-term goal, especially with the exuberant experimental frontier in academia and industry (e.g., IBM and Google). A candidate for quantum computational supremacy is Random Circuit Sampling (RCS), which is the task of sampling from the output distribution of a random circuit. The aforementioned mathematical results provide a new way of scrambling quantum circuits and are applied to prove that exact RCS is $#P$-Hard on average, which is a simpler alternative to Bouland et als. (Dis)Proving the quantum supremacy conjecture requires approximate average case hardness; this remains an open problem for all quantum supremacy proposals.
Using strong-disorder renormalization group, numerical exact diagonalization, and quantum Monte Carlo methods, we revisit the random antiferromagnetic XXZ spin-1/2 chain focusing on the long-length and ground-state behavior of the average time-indepe ndent spin-spin correlation function C(l)=upsilon l^{-eta}. In addition to the well-known universal (disorder-independent) power-law exponent eta=2, we find interesting universal features displayed by the prefactor upsilon=upsilon_o/3, if l is odd, and upsilon=upsilon_e/3, otherwise. Although upsilon_o and upsilon_e are nonuniversal (disorder dependent) and distinct in magnitude, the combination upsilon_o + upsilon_e = -1/4 is universal if C is computed along the symmetric (longitudinal) axis. The origin of the nonuniversalities of the prefactors is discussed in the renormalization-group framework where a solvable toy model is considered. Moreover, we relate the average correlation function with the average entanglement entropy, whose amplitude has been recently shown to be universal. The nonuniversalities of the prefactors are shown to contribute only to surface terms of the entropy. Finally, we discuss the experimental relevance of our results by computing the structure factor whose scaling properties, interestingly, depend on the correlation prefactors.
96 - S. Ouazi , J. Bobroff , H. Alloul 2003
We report a new multi-nuclei based NMR method which allows us to image the staggered polarization induced by nonmagnetic Li impurities in underdoped O6.6 and slightly overdoped O7 YBa2Cu3O6+y above T_C. The spatial extension of the polarization xi_im p approximately follows a Curie law, increasing up to six lattice constants at T=80K at O6.6 in the pseudogap regime. Near optimal doping, the staggered magnetization has the same shape, with xi_imp reduced by a factor 2. xi_imp is argued to reveal the intrinsic magnetic correlation length of the pure system. It is found to display a smooth evolution through the pseudogap regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا