ﻻ يوجد ملخص باللغة العربية
One-parameter interpolations between any two unitary matrices (e.g., quantum gates) $U_1$ and $U_2$ along efficient paths contained in the unitary group are constructed. Motivated by applications, we propose the continuous unitary path $U(theta)$ obtained from the QR-factorization [ U(theta)R(theta)=(1-theta)A+theta B, ] where $U_1 R_1=A$ and $U_2 R_2=B$ are the QR-factorizations of $A$ and $B$, and $U(theta)$ is a unitary for all $theta$ with $U(0)=U_1$ and $U(1)=U_2$. The QR-algorithm is modified to, instead of $U(theta)$, output a matrix whose columns are proportional to the corresponding columns of $U(theta)$ and whose entries are polynomial or rational functions of $theta$. By an extension of the Berlekamp-Welch algorithm we show that rational functions can be efficiently and exactly interpolated with respect to $theta$. We then construct probability distributions over unitaries that are arbitrarily close to the Haar measure. Demonstration of computational advantages of NISQ over classical computers is an imperative near-term goal, especially with the exuberant experimental frontier in academia and industry (e.g., IBM and Google). A candidate for quantum computational supremacy is Random Circuit Sampling (RCS), which is the task of sampling from the output distribution of a random circuit. The aforementioned mathematical results provide a new way of scrambling quantum circuits and are applied to prove that exact RCS is $#P$-Hard on average, which is a simpler alternative to Bouland et als. (Dis)Proving the quantum supremacy conjecture requires approximate average case hardness; this remains an open problem for all quantum supremacy proposals.
Motivated by the recent experimental demonstrations of quantum supremacy, proving the hardness of the output of random quantum circuits is an imperative near term goal. We prove under the complexity theoretical assumption of the non-collapse of the p
As Moores law reaches its limits, quantum computers are emerging with the promise of dramatically outperforming classical computers. We have witnessed the advent of quantum processors with over $50$ quantum bits (qubits), which are expected to be bey
Photonics is a promising platform for demonstrating quantum computational supremacy (QCS) by convincingly outperforming the most powerful classical supercomputers on a well-defined computational task. Despite this promise, existing photonics proposal
To ensure a long-term quantum computational advantage, the quantum hardware should be upgraded to withstand the competition of continuously improved classical algorithms and hardwares. Here, we demonstrate a superconducting quantum computing systems
Quantum computing is of high interest because it promises to perform at least some kinds of computations much faster than classical computers. Arute et al. 2019 (informally, the Google Quantum Team) report the results of experiments that purport to d