ﻻ يوجد ملخص باللغة العربية
We report a new multi-nuclei based NMR method which allows us to image the staggered polarization induced by nonmagnetic Li impurities in underdoped O6.6 and slightly overdoped O7 YBa2Cu3O6+y above T_C. The spatial extension of the polarization xi_imp approximately follows a Curie law, increasing up to six lattice constants at T=80K at O6.6 in the pseudogap regime. Near optimal doping, the staggered magnetization has the same shape, with xi_imp reduced by a factor 2. xi_imp is argued to reveal the intrinsic magnetic correlation length of the pure system. It is found to display a smooth evolution through the pseudogap regime.
The large ($10^2 - 10^5$) and strongly temperature dependent resistive anisotropy $eta = (sigma_{ab}/sigma_c)^{1/2}$ of cuprates perhaps holds the key to understanding their normal state in-plane $sigma_{ab}$ and out-of-plane $sigma_{c}$ conductiviti
We demonstrate that most features ascribed to strong correlation effects in various spectroscopies of the cuprates are captured by a calculation of the self-energy incorporating effects of spin and charge fluctuations. The self energy is calculated o
In order to investigate the electronic state of Ce-free and Ce-underdoped high-Tc cuprates with the so-called T structure, we have performed muon-spin-relaxation (muSR) and specific-heat measurements of Ce-free T-La_1.8_Eu_0.2_CuO_4+d_ (T-LECO) polyc
Nematicity is ubiquitous in electronic phases of high-$T_c$ superconductors, particularly in the Fe-based systems. We used inelastic x-ray scattering to extract the temperature-dependent nematic correlation length $xi$ from the anomalous softening of
Oxygen NMR is used to probe the local influence of nonmagnetic Zn and magnetic Ni impurities in the superconducting state of optimally doped high Tc YBa2Cu3O7. Zn and Ni induce a staggered paramagnetic polarization, similar to that evidenced above Tc