ترغب بنشر مسار تعليمي؟ اضغط هنا

Suppressed Auger scattering and tunable light emission of Landau-quantized massless Kane electrons

72   0   0.0 ( 0 )
 نشر من قبل Milan Orlita
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Landau level laser has been proposed a long time ago as a unique source of monochromatic radiation, widely tunable in the THz and infrared spectral ranges using an externally applied magnetic field. In spite of decades of efforts, this appealing concept never resulted in the design of a reliable device. This is due to efficient Auger scattering of Landau-quantized electrons, which is an intrinsic non-radiative recombination channel that eventually gains over cyclotron emission in all materials studied so far: in conventional semiconductors with parabolic bands, but also in graphene with massless electrons. The Auger processes are favored in these systems by Landau levels (or their subsets) equally spaced in energy. Here we show that this scheme does not apply to massless Kane electrons in gapless HgCdTe alloy, in which undesirable Auger scattering is strongly suppressed and the sizeable cyclotron emission observed, for the first time in the case of massless particles. The gapless HgCdTe thus appears as a material of choice for future technology of Landau level lasers.

قيم البحث

اقرأ أيضاً

We report on optical reflectivity experiments performed on Cd3As2 over a broad range of photon energies and magnetic fields. The observed response clearly indicates the presence of 3D massless charge carriers. The specific cyclotron resonance absorpt ion in the quantum limit implies that we are probing massless Kane electrons rather than symmetry-protected 3D Dirac particles. The latter may appear at a smaller energy scale and are not directly observed in our infrared experiments.
Solid state physics and quantum electrodynamics with its ultra-relativistic (massless) particles meet, to their mutual beneit, in the electronic properties of one-dimensional carbon nanotubes as well as two-dimensional graphene or surfaces of topolog ical insulators. However, clear experimental evidence for electronic states with conical dispersion relations in all three dimensions, conceivable in certain bulk materials, is still missing. In the present work, we fabricate and study a zinc-blend crystal, HgCdTe, at the point of the semiconductor-to-semimetal topological transition. Three-dimensional massless electrons with a velocity of about 10$^6$ m/s are observed in this material, as testifed by: (i) the dynamical conductivity which increases linearly with the photon frequency, (ii) in a magnetic field $B$, by a $sqrt{B}$ dependence of dipole-active inter-Landau-level resonances and (iii) the spin splitting of Landau levels, which follows a $sqrt{B}$ dependence, typical of ultra-relativistic particles but not really seen in any other electronic system so far.
We study free, capped and encapsulated bilayer jacutingaite Pt$_2$HgSe$_3$ from first principles. While the free standing bilayer is a large gap trivial insulator, we find that the encapsulated structure has a small trivial gap due to the competition between sublattice symmetry breaking and sublattice-dependent next-nearest-neighbor hopping. Upon the application of a small perpendicular electric field, the encapsulated bilayer undergoes a topological transition towards a quantum spin Hall insulator. We find that this topological transition can be qualitatively understood by modeling the two layers as uncoupled and described by an imbalanced Kane-Mele model that takes into account the sublattice imbalance and the corresponding inversion-symmetry breaking in each layer. Within this picture, bilayer jacutingaite undergoes a transition from a 0+0 state, where each layer is trivial, to a 0+1 state, where an unusual topological state relying on Rashba-like spin orbit coupling emerges in only one of the layers.
We investigate Landau-quantized excitonic absorption and luminescence of monolayer WSe$_2$ under magnetic field. We observe gate-dependent quantum oscillations in the bright exciton and trions (or exciton-polarons) as well as the dark trions and thei r phonon replicas. Our results reveal spin- and valley-polarized Landau levels (LLs) with filling factors $n = +0, +1$ in the bottom conduction band and $n = -0$ to $-6$ in the top valence band, including the Berry-curvature-induced $n = pm0$ LLs of massive Dirac fermions. The LL filling produces periodic plateaus in the exciton energy shift accompanied by sharp oscillations in the exciton absorption width and magnitude. This peculiar exciton behavior can be simulated by semi-empirical calculations. The experimentally deduced g-factors of the conduction band (g ~ 2.5) and valence band (g ~ 15) exceed those predicted in a single-particle model (g = 1.5, 5.5, respectively). Such g-factor enhancement implies strong many-body interactions in gated monolayer WSe$_2$. The complex interplay between Landau quantization, excitonic effects, and many-body interactions makes monolayer WSe$_2$ a promising platform to explore novel correlated quantum phenomena.
Non-equilibrium dynamics of strongly correlated systems constitutes a fascinating problem of condensed matter physics with many open questions. Here we investigate the relaxation dynamics of Landau-quantized electron system into spin-valley polarized ground state in a gate-tunable MoSe$_2$ monolayer subjected to a strong magnetic field. The system is driven out of equilibrium with optically injected excitons that depolarize the electron spins and the subsequent electron spin-valley relaxation is probed in time-resolved experiments. We demonstrate that the relaxation rate at millikelvin temperatures sensitively depends on the Landau level filling factor: it becomes faster whenever the electrons form an integer quantum Hall liquid and slows down appreciably at non-integer fillings. Our findings evidence that valley relaxation dynamics may be used as a tool to investigate the interplay between the effects of disorder and strong interactions in the electronic ground state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا