ﻻ يوجد ملخص باللغة العربية
Solid state physics and quantum electrodynamics with its ultra-relativistic (massless) particles meet, to their mutual beneit, in the electronic properties of one-dimensional carbon nanotubes as well as two-dimensional graphene or surfaces of topological insulators. However, clear experimental evidence for electronic states with conical dispersion relations in all three dimensions, conceivable in certain bulk materials, is still missing. In the present work, we fabricate and study a zinc-blend crystal, HgCdTe, at the point of the semiconductor-to-semimetal topological transition. Three-dimensional massless electrons with a velocity of about 10$^6$ m/s are observed in this material, as testifed by: (i) the dynamical conductivity which increases linearly with the photon frequency, (ii) in a magnetic field $B$, by a $sqrt{B}$ dependence of dipole-active inter-Landau-level resonances and (iii) the spin splitting of Landau levels, which follows a $sqrt{B}$ dependence, typical of ultra-relativistic particles but not really seen in any other electronic system so far.
We report on optical reflectivity experiments performed on Cd3As2 over a broad range of photon energies and magnetic fields. The observed response clearly indicates the presence of 3D massless charge carriers. The specific cyclotron resonance absorpt
The structural and optical properties of 3 different kinds of GaAs nanowires with 100% zinc-blende structure and with an average of 30% and 70% wurtzite are presented. A variety of shorter and longer segments of zinc-blende or wurtzite crystal phases
The Landau level laser has been proposed a long time ago as a unique source of monochromatic radiation, widely tunable in the THz and infrared spectral ranges using an externally applied magnetic field. In spite of decades of efforts, this appealing
A novel method for the direct correlation at the nanoscale of structural and optical properties of single GaAs nanowires is reported. Nanowires consisting of 100% wurtzite and nanowires presenting zinc-blende/wurtzite polytypism are investigated by p
Polarization dependent Raman scattering experiments realized on single GaAs nanowires with different percentages of zinc-blende and wurtzite structure are presented. The selection rules for the special case of nanowires are found and discussed. In th