ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-valley relaxation dynamics of Landau-quantized electrons in MoSe$_2$ monolayer

346   0   0.0 ( 0 )
 نشر من قبل Tomasz Smolenski
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Non-equilibrium dynamics of strongly correlated systems constitutes a fascinating problem of condensed matter physics with many open questions. Here we investigate the relaxation dynamics of Landau-quantized electron system into spin-valley polarized ground state in a gate-tunable MoSe$_2$ monolayer subjected to a strong magnetic field. The system is driven out of equilibrium with optically injected excitons that depolarize the electron spins and the subsequent electron spin-valley relaxation is probed in time-resolved experiments. We demonstrate that the relaxation rate at millikelvin temperatures sensitively depends on the Landau level filling factor: it becomes faster whenever the electrons form an integer quantum Hall liquid and slows down appreciably at non-integer fillings. Our findings evidence that valley relaxation dynamics may be used as a tool to investigate the interplay between the effects of disorder and strong interactions in the electronic ground state.



قيم البحث

اقرأ أيضاً

We investigate Landau-quantized excitonic absorption and luminescence of monolayer WSe$_2$ under magnetic field. We observe gate-dependent quantum oscillations in the bright exciton and trions (or exciton-polarons) as well as the dark trions and thei r phonon replicas. Our results reveal spin- and valley-polarized Landau levels (LLs) with filling factors $n = +0, +1$ in the bottom conduction band and $n = -0$ to $-6$ in the top valence band, including the Berry-curvature-induced $n = pm0$ LLs of massive Dirac fermions. The LL filling produces periodic plateaus in the exciton energy shift accompanied by sharp oscillations in the exciton absorption width and magnitude. This peculiar exciton behavior can be simulated by semi-empirical calculations. The experimentally deduced g-factors of the conduction band (g ~ 2.5) and valence band (g ~ 15) exceed those predicted in a single-particle model (g = 1.5, 5.5, respectively). Such g-factor enhancement implies strong many-body interactions in gated monolayer WSe$_2$. The complex interplay between Landau quantization, excitonic effects, and many-body interactions makes monolayer WSe$_2$ a promising platform to explore novel correlated quantum phenomena.
The valley pseudospin in monolayer transition metal dichalcogenides (TMDs) has been proposed as a new way to manipulate information in various optoelectronic devices. This relies on a large valley polarization that remains stable over long timescales (hundreds of ns). However, time resolved measurements report valley lifetimes of only a few ps. This has been attributed to mechanisms such as phonon-mediated inter-valley scattering and a precession of the valley psedospin through electron-hole exchange. Here we use transient spin grating to directly measure the valley depolarization lifetime in monolayer MoSe$_{2}$. We find a fast valley decay rate that scales linearly with the excitation density at different temperatures. This establishes the presence of strong exciton-exciton Coulomb exchange interactions enhancing the valley depolarization. Our work highlights the microscopic processes inhibiting the efficient use of the exciton valley pseudospin in monolayer TMDs.
Interfacing atomically thin van der Waals semiconductors with magnetic substrates enables additional control on their intrinsic valley degree of freedom and provides a promising platform for the development of novel valleytronic devices for informati on processing and storage. Here we study circularly polarized photoluminescence in heterostructures of monolayer MoSe$_2$ and thin films of ferrimagnetic bismuth iron garnet. We observe strong emission from charged excitons with negative valley polarization, which switches sign with increasing temperature, and demonstrate contrasting response to left and right circularly polarized excitation, associated with finite out-of-plane magnetization in the substrate. We propose a theoretical model accounting for magnetization-induced imbalance of charge carriers in the two valleys of MoSe$_2$, as well as for valley-switching scattering from B to A excitons and fast formation of trions with extended valley relaxation times, which shows excellent agreement with the experimental data. Our results provide new insights into valley physics in 2D semiconductors interfaced with magnetic substrates.
The optical susceptibility is a local, minimally-invasive and spin-selective probe of the ground state of a two-dimensional electron gas. We apply this probe to a gated monolayer of MoS$_2$. We demonstrate that the electrons are spin polarized. Of th e four available bands, only two are occupied. These two bands have the same spin but different valley quantum numbers. We argue that strong Coulomb interactions are a key aspect of this spontaneous symmetry breaking. The Bohr radius is so small that even electrons located far apart in phase space interact, facilitating exchange couplings to align the spins.
We study the magnetotransport of high-mobility electrons in monolayer and bilayer MoSe$_2$, which show Shubnikov-de Haas (SdH) oscillations and quantum Hall states in high magnetic fields. An electron effective mass of 0.8$m_e$ is extracted from the SdH oscillations temperature dependence; $m_e$ is the bare electron mass. At a fixed electron density the longitudinal resistance shows minima at filling factors (FFs) that are either predominantly odd, or predominantly even, with a parity that changes as the density is tuned. The SdH oscillations are insensitive to an in-plane magnetic field, consistent with an out-of-plane spin orientation of electrons at the $K$-point. We attribute the FFs parity transitions to an interaction enhancement of the Zeeman energy as the density is reduced, resulting in an increased Zeeman-to-cyclotron energy ratio.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا