ﻻ يوجد ملخص باللغة العربية
We study event shapes in N=4 SYM describing the angular distribution of energy and R-charge in the final states created by the simplest half-BPS scalar operator. Applying the approach developed in the companion paper arXiv:1309.0769, we compute these observables using the correlation functions of certain components of the N=4 stress-tensor supermultiplet: the half-BPS operator itself, the R-symmetry current and the stress tensor. We present master formulas for the all-order event shapes as convolutions of the Mellin amplitude defining the correlation function of the half-BPS operators, with a coupling-independent kernel determined by the choice of the observable. We find remarkably simple relations between various event shapes following from N=4 superconformal symmetry. We perform thorough checks at leading order in the weak coupling expansion and show perfect agreement with the conventional calculations based on amplitude techniques. We extend our results to strong coupling using the correlation function of half-BPS operators obtained from the AdS/CFT correspondence.
We argue that the scattering amplitudes in the maximally supersymmetric N=4 super-Yang-Mills theory possess a new symmetry which extends the previously discovered dual conformal symmetry. To reveal this property we formulate the scattering amplitudes
We study modular invariants arising in the four-point functions of the stress tensor multiplet operators of the ${cal N} = 4$ $SU(N)$ super-Yang-Mills theory, in the limit where $N$ is taken to be large while the complexified Yang-Mills coupling $tau
We calculate one-loop scattering amplitudes in N=4 super Yang-Mills theory away from the origin of the moduli space and demonstrate that the results are extremely simple, in much the same way as in the conformally invariant theory. Specifically, we c
BPS Wilson loops in supersymmetric gauge theories have been the subjects of active research since they are often amenable to exact computation. So far most of the studies have focused on loops that do not intersect. In this paper, we derive exact res
We compute the six-particle maximally-helicity-violating (MHV) and next-to-MHV (NMHV) amplitudes in planar maximally supersymmetric Yang-Mills theory through seven loops and six loops, respectively, as an application of the extended Steinmann relatio