ترغب بنشر مسار تعليمي؟ اضغط هنا

Event shapes in N=4 super-Yang-Mills theory

161   0   0.0 ( 0 )
 نشر من قبل Gregory Korchemsky
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study event shapes in N=4 SYM describing the angular distribution of energy and R-charge in the final states created by the simplest half-BPS scalar operator. Applying the approach developed in the companion paper arXiv:1309.0769, we compute these observables using the correlation functions of certain components of the N=4 stress-tensor supermultiplet: the half-BPS operator itself, the R-symmetry current and the stress tensor. We present master formulas for the all-order event shapes as convolutions of the Mellin amplitude defining the correlation function of the half-BPS operators, with a coupling-independent kernel determined by the choice of the observable. We find remarkably simple relations between various event shapes following from N=4 superconformal symmetry. We perform thorough checks at leading order in the weak coupling expansion and show perfect agreement with the conventional calculations based on amplitude techniques. We extend our results to strong coupling using the correlation function of half-BPS operators obtained from the AdS/CFT correspondence.



قيم البحث

اقرأ أيضاً

We argue that the scattering amplitudes in the maximally supersymmetric N=4 super-Yang-Mills theory possess a new symmetry which extends the previously discovered dual conformal symmetry. To reveal this property we formulate the scattering amplitudes as functions in the appropriate dual superspace. Rewritten in this form, all tree-level MHV and next-to-MHV amplitudes exhibit manifest dual superconformal symmetry. We propose a new, compact and Lorentz covariant formula for the tree-level NMHV amplitudes for arbitrary numbers and types of external particles. The dual conformal symmetry is broken at loop level by infrared divergences. However, we provide evidence that the anomalous contribution to the MHV and NMHV superamplitudes is the same and, therefore, their ratio is a dual conformal invariant function. We identify this function by an explicit calculation of the six-particle amplitudes at one loop. We conjecture that these properties hold for all, MHV and non-MHV, superamplitudes in N=4 SYM both at weak and at strong coupling.
We study modular invariants arising in the four-point functions of the stress tensor multiplet operators of the ${cal N} = 4$ $SU(N)$ super-Yang-Mills theory, in the limit where $N$ is taken to be large while the complexified Yang-Mills coupling $tau $ is held fixed. The specific four-point functions we consider are integrated correlators obtained by taking various combinations of four derivatives of the squashed sphere partition function of the ${cal N} = 2^*$ theory with respect to the squashing parameter $b$ and mass parameter $m$, evaluated at the values $b=1$ and $m=0$ that correspond to the ${cal N} = 4$ theory on a round sphere. At each order in the $1/N$ expansion, these fourth derivatives are modular invariant functions of $(tau, bar tau)$. We present evidence that at half-integer orders in $1/N$, these modular invariants are linear combinations of non-holomorphic Eisenstein series, while at integer orders in $1/N$, they are certain generalized Eisenstein series which satisfy inhomogeneous Laplace eigenvalue equations on the hyperbolic plane. These results reproduce known features of the low-energy expansion of the four-graviton amplitude in type IIB superstring theory in ten-dimensional flat space and have interesting implications for the structure of the analogous expansion in $AdS_5times S^5$.
We calculate one-loop scattering amplitudes in N=4 super Yang-Mills theory away from the origin of the moduli space and demonstrate that the results are extremely simple, in much the same way as in the conformally invariant theory. Specifically, we c onsider the model where an SU(2) gauge group is spontaneously broken down to U(1). The complete component Lagrange density of the model is given in a form useful for perturbative calculations. We argue that the scattering amplitudes with massive external states deserve further study. Finally, our work shows that loop corrections can be readily computed in a mass-regulated N=4 theory, which may be relevant in trying to connect weak-coupling results with those at strong coupling, as discussed recently by Alday and Maldacena.
BPS Wilson loops in supersymmetric gauge theories have been the subjects of active research since they are often amenable to exact computation. So far most of the studies have focused on loops that do not intersect. In this paper, we derive exact res ults for intersecting 1/8 BPS Wilson loops in N=4 supersymmetric Yang-Mills theory, using a combination of supersymmetric localization and the loop equation in 2d gauge theory. The result is given by a novel matrix-model-like representation which couples multiple contour integrals and a Gaussian matrix model. We evaluate the integral at large N, and make contact with the string worldsheet description at strong coupling. As an application of our results, we compute exactly a small-angle limit (and more generally near-BPS limits) of the cross anomalous dimension which governs the UV divergence of intersecting Wilson lines. The same quantity describes the soft anomalous dimension of scattering amplitudes of W-bosons in the Coulomb branch.
We compute the six-particle maximally-helicity-violating (MHV) and next-to-MHV (NMHV) amplitudes in planar maximally supersymmetric Yang-Mills theory through seven loops and six loops, respectively, as an application of the extended Steinmann relatio ns and using the cosmic Galois coaction principle. Starting from a minimal space of functions constructed using these principles, we identify the amplitude by matching its symmetries and predicted behavior in various kinematic limits. Through five loops, the MHV and NMHV amplitudes are uniquely determined using only the multi-Regge and leading collinear limits. Beyond five loops, the MHV amplitude requires additional data from the kinematic expansion around the collinear limit, which we obtain from the Pentagon Operator Product Expansion, and in particular from its single-gluon bound state contribution. We study the MHV amplitude in the self-crossing limit, where its singular terms agree with previous predictions. Analyzing and plotting the amplitudes along various kinematical lines, we continue to find remarkable stability between loop orders.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا