ترغب بنشر مسار تعليمي؟ اضغط هنا

Conformally maximal metrics for Laplace eigenvalues on surfaces

201   0   0.0 ( 0 )
 نشر من قبل Mikhail Karpukhin
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The paper is concerned with the maximization of Laplace eigenvalues on surfaces of given volume with a Riemannian metric in a fixed conformal class. A significant progress on this problem has been recently achieved by Nadirashvili-Sire and Petrides using related, though different methods. In particular, it was shown that for a given $k$, the maximum of the $k$-th Laplace eigenvalue in a conformal class on a surface is either attained on a metric which is smooth except possibly at a finite number of conical singularities, or it is attained in the limit while a bubble tree is formed on a surface. Geometrically, the bubble tree appearing in this setting can be viewed as a union of touching identical round spheres. We present another proof of this statement, developing the approach proposed by the second author and Y. Sire. As a side result, we provide explicit upper bounds on the topological spectrum of surfaces.

قيم البحث

اقرأ أيضاً

We show that for any positive integer k, the k-th nonzero eigenvalue of the Laplace-Beltrami operator on the two-dimensional sphere endowed with a Riemannian metric of unit area, is maximized in the limit by a sequence of metrics converging to a unio n of k touching identical round spheres. This proves a conjecture posed by the second author in 2002 and yields a sharp isoperimetric inequality for all nonzero eigenvalues of the Laplacian on a sphere. Earlier, the result was known only for k=1 (J. Hersch, 1970), k=2 (N. Nadirashvili, 2002; R. Petrides, 2014) and k=3 (N. Nadirashvili and Y. Sire, 2017). In particular, we argue that for any k>=2, the supremum of the k-th nonzero eigenvalue on a sphere of unit area is not attained in the class of Riemannian metrics which are smooth outsitde a finite set of conical singularities. The proof uses certain properties of harmonic maps between spheres, the key new ingredient being a bound on the harmonic degree of a harmonic map into a sphere obtained by N. Ejiri.
We prove two explicit bounds for the multiplicities of Steklov eigenvalues $sigma_k$ on compact surfaces with boundary. One of the bounds depends only on the genus of a surface and the index $k$ of an eigenvalue, while the other depends as well on th e number of boundary components. We also show that on any given smooth Riemannian surface with boundary, the multiplicities of Steklov eigenvalues $sigma_k$ are uniformly bounded in $k$.
77 - D. Borthwick , C. Judge , 2001
We construct a determinant of the Laplacian for infinite-area surfaces which are hyperbolic near infinity and without cusps. In the case of a convex co-compact hyperbolic metric, the determinant can be related to the Selberg zeta function and thus sh own to be an entire function of order two with zeros at the eigenvalues and resonances of the Laplacian. In the hyperbolic near infinity case the determinant is analyzed through the zeta-regularized relative determinant for a conformal metric perturbation. We establish that this relative determinant is a ratio of entire functions of order two with divisor corresponding to eigenvalues and resonances of the perturbed and unperturbed metrics. These results are applied to the problem of compactness in the smooth topology for the class of metrics with a given set of eigenvalues and resonances.
67 - Ren Guo 2011
The discrete Laplace operator on a triangulated polyhedral surface is related to geometric properties of the surface. This paper studies extremum problems for eigenvalues of the discrete Laplace operators. Among all triangles, an equilateral triangle has the maximal first positive eigenvalue. Among all cyclic quadrilateral, a square has the maximal first positive eigenvalue. Among all cyclic $n$-gons, a regular one has the minimal value of the sum of all nontrivial eigenvalues and the minimal value of the product of all nontrivial eigenvalues.
97 - Rafe Mazzeo , Xuwen Zhu 2019
We continue our study, initiated in our earlier paper, of Riemann surfaces with constant curvature and isolated conic singularities. Using the machinery developed in that earlier paper of extended configuration families of simple divisors, we study t he existence and deformation theory for spherical conic metrics with some or all of the cone angles greater than $2pi$. Deformations are obstructed precisely when the number $2$ lies in the spectrum of the Friedrichs extension of the Laplacian. Our main result is that, in this case, it is possible to find a smooth local moduli space of solutions by allowing the cone points to split. This analytic fact reflects geometric constructions in papers by Mondello and Panov.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا