ﻻ يوجد ملخص باللغة العربية
We develop analytical methods for nonlinear Dirac equations. Examples of such equations include Dirac-harmonic maps with curvature term and the equations describing the generalized Weierstrass representation of surfaces in three-manifolds. We provide the key analytical steps, i.e., small energy regularity and removable singularity theorems and energy identities for solutions.
Motivated by the supersymmetric extension of Liouville theory in the recent physics literature, we couple the standard Liouville functional with a spinor field term. The resulting functional is conformally invariant. We study geometric and analytic a
We continue our study, initiated in our earlier paper, of Riemann surfaces with constant curvature and isolated conic singularities. Using the machinery developed in that earlier paper of extended configuration families of simple divisors, we study t
Knizhnik-Zamolodchikov-Bernard equations for twisted conformal blocks on compact Riemann surfaces with marked points are written explicitly in a general projective structure in terms of correlation functions in the theory of twisted b-c systems. It i
This note is to concern a generalization to the case of twisted coefficients of the classical theory of Abelian differentials on a compact Riemann surface. We apply the Dirichlets principle to a modified energy functional to show the existence of dif
We introduce and study (strict) Schottky G-bundles over a compact Riemann surface X, where G is a connected reductive algebraic group. Strict Schottky representations are shown to be related to branes in the moduli space of G-Higgs bundles over X, an