ﻻ يوجد ملخص باللغة العربية
We study a system of penetrable bosons embedded in a spherical surface. Under the assumption of weak interaction between the particles, the ground state of the system is, to a good approximation, a pure condensate. We employ thermodynamic arguments to investigate, within a variational ansatz for the single-particle state, the crossover between distinct finite-size phases in the parameter space spanned by the sphere radius and the chemical potential. In particular, for radii up to a few interaction ranges we examine the stability of the fluid phase with respect to a number of crystal-like arrangements having the symmetry of a regular or semi-regular polyhedron. We find that, while quantum fluctuations keep the system fluid at low density, upon compression it eventually becomes inhomogeneous, i.e., particles gather together in clusters. As the radius increases, the nature of the high-density aggregate varies and we observe a sequence of transitions between different cluster phases (solids), whose underlying rationale is to maximize the coordination number of clusters, while ensuring at the same time the proper distance between each neighboring pair. We argue that, at least within our mean-field description, every cluster phase is supersolid.
The properties of a macroscopic assembly of weakly-repulsive bosons at zero temperature are well described by Gross-Pitaevskii mean-field theory. According to this formalism the system exhibits a quantum transition from superfluid to cluster supersol
We study hard core bosons on a two leg ladder lattice under the orbital effect of a uniform magnetic field. At densities which are incommensurate with flux, the ground state is a Meissner state, or a vortex state, depending on the strength of the flu
We calculate analytically the entanglement and Renyi entropies, the negativity and the mutual information together with all the density and many-particle correlation functions for free bosons on a lattice in the ground state. We show that those quant
We study a system of penetrable bosons on a line, focusing on the high-density/weak-interaction regime, where the ground state is, to a good approximation, a condensate. Under compression, the system clusterizes at zero temperature, i.e., particles g
Using anyon-fermion mapping method, we investigate the ground state properties of hard-core anyons confined in a one-dimensional harmonic trap. The concise analytical formula of the reduced one-body density matrix are obtained. Basing on the formula,