ﻻ يوجد ملخص باللغة العربية
We study a system of penetrable bosons on a line, focusing on the high-density/weak-interaction regime, where the ground state is, to a good approximation, a condensate. Under compression, the system clusterizes at zero temperature, i.e., particles gather together in separate, equally populated bunches. We compare predictions from the Gross-Pitaevskii (GP) equation with those of two distinct variational approximations of the single-particle state, written as either a sum of Gaussians or the square root of it. Not only the wave functions in the three theories are similar, but also the phase-transition density is the same for all. In particular, clusterization occurs together with the softening of roton excitations in GP theory. Compared to the latter theory, Gaussian variational theory has the advantage that the mean-field energy functional is written in (almost) closed form, which enables us to extract the phase-transition and high-density behaviors in fully analytic terms. We also compute the superfluid fraction of the clustered system, uncovering its exact behavior close, as well as very far away from, the transition.
It is commonly accepted that there are no phase transitions in one-dimensional (1D) systems at a finite temperature, because long-range correlations are destroyed by thermal fluctuations. Here we demonstrate that the 1D gas of short-range interacting
The properties of a macroscopic assembly of weakly-repulsive bosons at zero temperature are well described by Gross-Pitaevskii mean-field theory. According to this formalism the system exhibits a quantum transition from superfluid to cluster supersol
One of the most important issues in disordered systems is the interplay of the disorder and repulsive interactions. Several recent experimental advances on this topic have been made with ultracold atoms, in particular the observation of Anderson loca
By means of time-dependent density-matrix renormalization-group (TDMRG) we are able to follow the real-time dynamics of a single impurity embedded in a one-dimensional bath of interacting bosons. We focus on the impurity breathing mode, which is foun
We study a flow of ultracold bosonic atoms through a one-dimensional channel that connects two macroscopic three-dimensional reservoirs of Bose-condensed atoms via weak links implemented as potential barriers between each of the reservoirs and the ch