ﻻ يوجد ملخص باللغة العربية
Using anyon-fermion mapping method, we investigate the ground state properties of hard-core anyons confined in a one-dimensional harmonic trap. The concise analytical formula of the reduced one-body density matrix are obtained. Basing on the formula, we evaluated the momentum distribution, the natural orbitals and their occupation distributions for different statistical parameters. The occupation and occupation fraction of the lowest natural orbital versus anyon number are also displayed. It is shown that the ground state properties of anyons interplay between Bosons and Fermions continuously. We can expect that the hard-core anyons of larger statistical parameter exhibit the similar properties to the hard-core Bosons although anyon system satisfy specific fractional statistics.
We investigate the strongly interacting hard-core anyon gases in a one dimensional harmonic potential at finite temperature by extending thermal Bose-Fermi mapping method to thermal anyon-ferimon mapping method. With thermal anyon-fermion mapping met
We study a system of penetrable bosons embedded in a spherical surface. Under the assumption of weak interaction between the particles, the ground state of the system is, to a good approximation, a pure condensate. We employ thermodynamic arguments t
We consider a quantum impurity immersed in a dipolar Bose Einstein condensate and study the properties of the emerging polaron. We calculate the energy, effective mass and quasi-particle residue of the dipolar polaron and investigate their behaviour
We theoretically investigate the role of multiple impurity atoms on the ground state properties of Bose polarons. The Bogoliubov approximation is applied for the description of the condensate resulting in a Hamiltonian containing terms beyond the Fro
We study hard core bosons on a two leg ladder lattice under the orbital effect of a uniform magnetic field. At densities which are incommensurate with flux, the ground state is a Meissner state, or a vortex state, depending on the strength of the flu