ترغب بنشر مسار تعليمي؟ اضغط هنا

Pixel-Accurate Depth Evaluation in Realistic Driving Scenarios

53   0   0.0 ( 0 )
 نشر من قبل Gruber Tobias
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This work introduces an evaluation benchmark for depth estimation and completion using high-resolution depth measurements with angular resolution of up to 25 (arcsecond), akin to a 50 megapixel camera with per-pixel depth available. Existing datasets, such as the KITTI benchmark, provide only sparse reference measurements with an order of magnitude lower angular resolution - these sparse measurements are treated as ground truth by existing depth estimation methods. We propose an evaluation methodology in four characteristic automotive scenarios recorded in varying weather conditions (day, night, fog, rain). As a result, our benchmark allows us to evaluate the robustness of depth sensing methods in adverse weather and different driving conditions. Using the proposed evaluation data, we demonstrate that current stereo approaches provide significantly more stable depth estimates than monocular methods and lidar completion in adverse weather. Data and code are available at https://github.com/gruberto/PixelAccurateDepthBenchmark.git.

قيم البحث

اقرأ أيضاً

While radar and video data can be readily fused at the detection level, fusing them at the pixel level is potentially more beneficial. This is also more challenging in part due to the sparsity of radar, but also because automotive radar beams are muc h wider than a typical pixel combined with a large baseline between camera and radar, which results in poor association between radar pixels and color pixel. A consequence is that depth completion methods designed for LiDAR and video fare poorly for radar and video. Here we propose a radar-to-pixel association stage which learns a mapping from radar returns to pixels. This mapping also serves to densify radar returns. Using this as a first stage, followed by a more traditional depth completion method, we are able to achieve image-guided depth completion with radar and video. We demonstrate performance superior to camera and radar alone on the nuScenes dataset. Our source code is available at https://github.com/longyunf/rc-pda.
The inability of state-of-the-art semantic segmentation methods to detect anomaly instances hinders them from being deployed in safety-critical and complex applications, such as autonomous driving. Recent approaches have focused on either leveraging segmentation uncertainty to identify anomalous areas or re-synthesizing the image from the semantic label map to find dissimilarities with the input image. In this work, we demonstrate that these two methodologies contain complementary information and can be combined to produce robust predictions for anomaly segmentation. We present a pixel-wise anomaly detection framework that uses uncertainty maps to improve over existing re-synthesis methods in finding dissimilarities between the input and generated images. Our approach works as a general framework around already trained segmentation networks, which ensures anomaly detection without compromising segmentation accuracy, while significantly outperforming all similar methods. Top-2 performance across a range of different anomaly datasets shows the robustness of our approach to handling different anomaly instances.
This research addresses the challenging problem of visual collision detection in very complex and dynamic real physical scenes, specifically, the vehicle driving scenarios. This research takes inspiration from a large-field looming sensitive neuron, i.e., the lobula giant movement detector (LGMD) in the locusts visual pathways, which represents high spike frequency to rapid approaching objects. Building upon our previous models, in this paper we propose a novel inhibition mechanism that is capable of adapting to different levels of background complexity. This adaptive mechanism works effectively to mediate the local inhibition strength and tune the temporal latency of local excitation reaching the LGMD neuron. As a result, the proposed model is effective to extract colliding cues from complex dynamic visual scenes. We tested the proposed method using a range of stimuli including simulated movements in grating backgrounds and shifting of a natural panoramic scene, as well as vehicle crash video sequences. The experimental results demonstrate the proposed method is feasible for fast collision perception in real-world situations with potential applications in future autonomous vehicles.
Autonomous driving models should ideally be evaluated by deploying them on a fleet of physical vehicles in the real world. Unfortunately, this approach is not practical for the vast majority of researchers. An attractive alternative is to evaluate mo dels offline, on a pre-collected validation dataset with ground truth annotation. In this paper, we investigate the relation between various online and offline metrics for evaluation of autonomous driving models. We find that offline prediction error is not necessarily correlated with driving quality, and two models with identical prediction error can differ dramatically in their driving performance. We show that the correlation of offline evaluation with driving quality can be significantly improved by selecting an appropriate validation dataset and suitable offline metrics. The supplementary video can be viewed at https://www.youtube.com/watch?v=P8K8Z-iF0cY
This paper presents a general framework to build fast and accurate algorithms for video enhancement tasks such as super-resolution, deblurring, and denoising. Essential to our framework is the realization that the accuracy, rather than the density, o f pixel flows is what is required for high-quality video enhancement. Most of prior works take the opposite approach: they estimate dense (per-pixel)-but generally less robust-flows, mostly using computationally costly algorithms. Instead, we propose a lightweight flow estimation algorithm; it fuses the sparse point cloud data and (even sparser and less reliable) IMU data available in modern autonomous agents to estimate the flow information. Building on top of the flow estimation, we demonstrate a general framework that integrates the flows in a plug-and-play fashion with different task-specific layers. Algorithms built in our framework achieve 1.78x - 187.41x speedup while providing a 0.42 dB - 6.70 dB quality improvement over competing methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا