ﻻ يوجد ملخص باللغة العربية
This paper presents a general framework to build fast and accurate algorithms for video enhancement tasks such as super-resolution, deblurring, and denoising. Essential to our framework is the realization that the accuracy, rather than the density, of pixel flows is what is required for high-quality video enhancement. Most of prior works take the opposite approach: they estimate dense (per-pixel)-but generally less robust-flows, mostly using computationally costly algorithms. Instead, we propose a lightweight flow estimation algorithm; it fuses the sparse point cloud data and (even sparser and less reliable) IMU data available in modern autonomous agents to estimate the flow information. Building on top of the flow estimation, we demonstrate a general framework that integrates the flows in a plug-and-play fashion with different task-specific layers. Algorithms built in our framework achieve 1.78x - 187.41x speedup while providing a 0.42 dB - 6.70 dB quality improvement over competing methods.
Most of the deep-learning based depth and ego-motion networks have been designed for visible cameras. However, visible cameras heavily rely on the presence of an external light source. Therefore, it is challenging to use them under low-light conditio
Depth completion aims at inferring a dense depth image from sparse depth measurement since glossy, transparent or distant surface cannot be scanned properly by the sensor. Most of existing methods directly interpolate the missing depth measurements b
For a robot deployed in the world, it is desirable to have the ability of autonomous learning to improve its initial pre-set knowledge. We formalize this as a bootstrapped self-supervised learning problem where a system is initially bootstrapped with
Online video object segmentation is a challenging task as it entails to process the image sequence timely and accurately. To segment a target object through the video, numerous CNN-based methods have been developed by heavily finetuning on the object
Depth maps obtained by commercial depth sensors are always in low-resolution, making it difficult to be used in various computer vision tasks. Thus, depth map super-resolution (SR) is a practical and valuable task, which upscales the depth map into h