ترغب بنشر مسار تعليمي؟ اضغط هنا

On Offline Evaluation of Vision-based Driving Models

67   0   0.0 ( 0 )
 نشر من قبل Felipe Codevilla
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Autonomous driving models should ideally be evaluated by deploying them on a fleet of physical vehicles in the real world. Unfortunately, this approach is not practical for the vast majority of researchers. An attractive alternative is to evaluate models offline, on a pre-collected validation dataset with ground truth annotation. In this paper, we investigate the relation between various online and offline metrics for evaluation of autonomous driving models. We find that offline prediction error is not necessarily correlated with driving quality, and two models with identical prediction error can differ dramatically in their driving performance. We show that the correlation of offline evaluation with driving quality can be significantly improved by selecting an appropriate validation dataset and suitable offline metrics. The supplementary video can be viewed at https://www.youtube.com/watch?v=P8K8Z-iF0cY



قيم البحث

اقرأ أيضاً

In recent years, many deep learning models have been adopted in autonomous driving. At the same time, these models introduce new vulnerabilities that may compromise the safety of autonomous vehicles. Specifically, recent studies have demonstrated tha t adversarial attacks can cause a significant decline in detection precision of deep learning-based 3D object detection models. Although driving safety is the ultimate concern for autonomous driving, there is no comprehensive study on the linkage between the performance of deep learning models and the driving safety of autonomous vehicles under adversarial attacks. In this paper, we investigate the impact of two primary types of adversarial attacks, perturbation attacks and patch attacks, on the driving safety of vision-based autonomous vehicles rather than the detection precision of deep learning models. In particular, we consider two state-of-the-art models in vision-based 3D object detection, Stereo R-CNN and DSGN. To evaluate driving safety, we propose an end-to-end evaluation framework with a set of driving safety performance metrics. By analyzing the results of our extensive evaluation experiments, we find that (1) the attacks impact on the driving safety of autonomous vehicles and the attacks impact on the precision of 3D object detectors are decoupled, and (2) the DSGN model demonstrates stronger robustness to adversarial attacks than the Stereo R-CNN model. In addition, we further investigate the causes behind the two findings with an ablation study. The findings of this paper provide a new perspective to evaluate adversarial attacks and guide the selection of deep learning models in autonomous driving.
This survey reviews explainability methods for vision-based self-driving systems. The concept of explainability has several facets and the need for explainability is strong in driving, a safety-critical application. Gathering contributions from sever al research fields, namely computer vision, deep learning, autonomous driving, explainable AI (X-AI), this survey tackles several points. First, it discusses definitions, context, and motivation for gaining more interpretability and explainability from self-driving systems. Second, major recent state-of-the-art approaches to develop self-driving systems are quickly presented. Third, methods providing explanations to a black-box self-driving system in a post-hoc fashion are comprehensively organized and detailed. Fourth, approaches from the literature that aim at building more interpretable self-driving systems by design are presented and discussed in detail. Finally, remaining open-challenges and potential future research directions are identified and examined.
Standard dynamics models for continuous control make use of feedforward computation to predict the conditional distribution of next state and reward given current state and action using a multivariate Gaussian with a diagonal covariance structure. Th is modeling choice assumes that different dimensions of the next state and reward are conditionally independent given the current state and action and may be driven by the fact that fully observable physics-based simulation environments entail deterministic transition dynamics. In this paper, we challenge this conditional independence assumption and propose a family of expressive autoregressive dynamics models that generate different dimensions of the next state and reward sequentially conditioned on previous dimensions. We demonstrate that autoregressive dynamics models indeed outperform standard feedforward models in log-likelihood on heldout transitions. Furthermore, we compare different model-based and model-free off-policy evaluation (OPE) methods on RL Unplugged, a suite of offline MuJoCo datasets, and find that autoregressive dynamics models consistently outperform all baselines, achieving a new state-of-the-art. Finally, we show that autoregressive dynamics models are useful for offline policy optimization by serving as a way to enrich the replay buffer through data augmentation and improving performance using model-based planning.
For the past ten years, CNN has reigned supreme in the world of computer vision, but recently, Transformer is on the rise. However, the quadratic computational cost of self-attention has become a severe problem of practice. There has been much resear ch on architectures without CNN and self-attention in this context. In particular, MLP-Mixer is a simple idea designed using MLPs and hit an accuracy comparable to the Vision Transformer. However, the only inductive bias in this architecture is the embedding of tokens. Thus, there is still a possibility to build a non-convolutional inductive bias into the architecture itself, and we built in an inductive bias using two simple ideas. A way is to divide the token-mixing block vertically and horizontally. Another way is to make spatial correlations denser among some channels of token-mixing. With this approach, we were able to improve the accuracy of the MLP-Mixer while reducing its parameters and computational complexity. Compared to other MLP-based models, the proposed model, named RaftMLP has a good balance of computational complexity, the number of parameters, and actual memory usage. In addition, our work indicates that MLP-based models have the potential to replace CNNs by adopting inductive bias. The source code in PyTorch version is available at url{https://github.com/okojoalg/raft-mlp}.
We present an integrated approach for perception and control for an autonomous vehicle and demonstrate this approach in a high-fidelity urban driving simulator. Our approach first builds a model for the environment, then trains a policy exploiting th e learned model to identify the action to take at each time-step. To build a model for the environment, we leverage several deep learning algorithms. To that end, first we train a variational autoencoder to encode the input image into an abstract latent representation. We then utilize a recurrent neural network to predict the latent representation of the next frame and handle temporal information. Finally, we utilize an evolutionary-based reinforcement learning algorithm to train a controller based on these latent representations to identify the action to take. We evaluate our approach in CARLA, a high-fidelity urban driving simulator, and conduct an extensive generalization study. Our results demonstrate that our approach outperforms several previously reported approaches in terms of the percentage of successfully completed episodes for a lane keeping task.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا