ترغب بنشر مسار تعليمي؟ اضغط هنا

Holography, Matrix Factorizations and K-stability

180   0   0.0 ( 0 )
 نشر من قبل Marco Fazzi
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Placing D3-branes at conical Calabi-Yau threefold singularities produces many AdS$_5$/CFT$_4$ duals. Recent progress in differential geometry has produced a technique (called K-stability) to recognize which singularities admit conical Calabi-Yau metrics. On the other hand, the algebraic technique of non-commutative crepant resolutions, involving matrix factorizations, has been developed to associate a quiver to a singularity. In this paper, we put together these ideas to produce new AdS$_5$/CFT$_4$ duals, with special emphasis on non-toric singularities.



قيم البحث

اقرأ أيضاً

We set up the formalism of holographic renormalization for the matter-coupled two-dimensional maximal supergravity that captures the low-lying fluctuations around the non-conformal D0-brane near-horizon geometry. As an application we compute holograp hically one- and two-point functions of the BFSS matrix quantum mechanics and its supersymmetric $SO(3)times SO(6)$ deformation.
By using the conserved currents associated to the diffeomorphism invariance, we study dynamical holographic systems and the relation between thermodynamical and dynamical stability of such systems. The case with fixed space-time backgrounds is discus sed first, where a generalized free energy is defined with the property of monotonic decreasing in dynamic processes. It is then shown that the (absolute) thermodynamical stability implies the dynamical stability, while the linear dynamical stability implies the thermodynamical (meta-)stability. The case with full back-reaction is much more complicated. With the help of conserved currents associated to the diffeomorphism invariance induced by a preferred vector field, we propose a thermodynamic form of the bulk space-time dynamics with a preferred temperature of the event horizon, where a monotonically decreasing quantity can be defined as well. In both cases, our analyses help to clarify some aspects of the far-from-equilibrium holographic physics.
We study matrix factorization and curved module categories for Landau-Ginzburg models (X,W) with X a smooth variety, extending parts of the work of Dyckerhoff. Following Positselski, we equip these categories with model category structures. Using res ults of Rouquier and Orlov, we identify compact generators. Via Toens derived Morita theory, we identify Hochschild cohomology with derived endomorphisms of the diagonal curved module; we compute the latter and get the expected result. Finally, we show that our categories are smooth, proper when the singular locus of W is proper, and Calabi-Yau when the total space X is Calabi-Yau.
We study matrix factorizations of locally free coherent sheaves on a scheme. For a scheme that is projective over an affine scheme, we show that homomorphisms in the homotopy category of matrix factorizations may be computed as the hypercohomology of a certain mapping complex. Using this explicit description, we give another proof of Orlovs theorem that there is a fully faithful embedding of the homotopy category of matrix factorizations into the singularity category of the corresponding zero subscheme. We also give a complete description of the image of this functor.
We observe that there is an equivalence between the singularity category of an affine complete intersection and the homotopy category of matrix factorizations over a related scheme. This relies in part on a theorem of Orlov. Using this equivalence, w e give a geometric construction of the ring of cohomology operators, and a generalization of the theory of support varieties, which we call stable support sets. We settle a question of Avramov about which stable support sets can arise for a given complete intersection ring. We also use the equivalence to construct a projective resolution of a module over a complete intersection ring from a matrix factorization, generalizing the well-known result in the hypersurface case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا