ﻻ يوجد ملخص باللغة العربية
By using the conserved currents associated to the diffeomorphism invariance, we study dynamical holographic systems and the relation between thermodynamical and dynamical stability of such systems. The case with fixed space-time backgrounds is discussed first, where a generalized free energy is defined with the property of monotonic decreasing in dynamic processes. It is then shown that the (absolute) thermodynamical stability implies the dynamical stability, while the linear dynamical stability implies the thermodynamical (meta-)stability. The case with full back-reaction is much more complicated. With the help of conserved currents associated to the diffeomorphism invariance induced by a preferred vector field, we propose a thermodynamic form of the bulk space-time dynamics with a preferred temperature of the event horizon, where a monotonically decreasing quantity can be defined as well. In both cases, our analyses help to clarify some aspects of the far-from-equilibrium holographic physics.
We discuss mesons in thermalizing gluon backgrounds in the N=2 supersymmetric QCD using the gravity dual. We numerically compute the dynamics of a probe D7-brane in the Vaidya-AdS geometry that corresponds to a D3-brane background thermalizing from z
We consider the linear stability of $4$-dimensional hairy black holes with mixed boundary conditions in Anti-de Sitter spacetime. We focus on the mass of scalar fields around the maximally supersymmetric vacuum of the gauged $mathcal{N}=8$ supergravi
In the $Lambda$CDM model, dark energy is viewed as a constant vacuum energy density, the cosmological constant in the Einstein--Hilbert action. This assumption can be relaxed in various models that introduce a dynamical dark energy. In this letter, w
Clarifying conditions for the existence of a gravitational picture for a given quantum field theory (QFT) is one of the fundamental problems in the AdS/CFT correspondence. We propose a direct way to demonstrate the existence of the dual black holes:
We consider counterterms for odd dimensional holographic CFTs. These counterterms are derived by demanding cut-off independence of the CFT partition function on $S^d$ and $S^1 times S^{d-1}$. The same choice of counterterms leads to a cut-off indepen