ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalized Near Horizon Extreme Binary Black Hole Geometry

304   0   0.0 ( 0 )
 نشر من قبل Jacob Ciafre Mr
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new vacuum solution of Einsteins equations describing the near horizon region of two neutral, extreme (zero-temperature), co-rotating, non-identical Kerr black holes. The metric is stationary, asymptotically near horizon extremal Kerr (NHEK), and contains a localized massless strut along the symmetry axis between the black holes. In the deep infrared, it flows to two separate throats which we call pierced-NHEK geometries: each throat is NHEK pierced by a conical singularity. We find that in spite of the presence of the strut for the pierced-NHEK geometries the isometry group SL(2,R)xU(1) is restored. We find the physical parameters and entropy.



قيم البحث

اقرأ أيضاً

96 - Leong Khim Wong 2019
I present evidence of a novel guise of superradiance that arises in black hole binary spacetimes. Given the right initial conditions, a wave will be amplified as it scatters off the binary. This process, which extracts energy from the orbital motion, is driven by absorption across the horizons and is most pronounced when the individual black holes are not spinning. Focusing on real scalar fields, I demonstrate how modern effective field theory (EFT) techniques enable the computation of the superradiant amplification factor analytically when there exist large separations of scales. Although exploiting these hierarchies inevitably means that the amplification factor is always negligible (it is never larger than about one part in $10^{10}$) in the EFTs regime of validity, this work has interesting theoretical implications for our understanding of general relativity and lays the groundwork for future studies on superradiant phenomena in binary systems.
We study force-free magnetospheres in the Blandford-Znajek process from rapidly rotating black holes by adopting the near-horizon geometry of near-extreme Kerr black holes (near-NHEK). It is shown that the Znajek regularity condition on the horizon c an be directly derived from the resulting stream equation. In terms of the condition, we split the full stream equation into two separate equations. Approximate solutions around the rotation axis are derived. They are found to be consistent with previous solutions obtained in the asymptotic region. The solutions indicate energy and angular-momentum extraction from the hole.
Massive objects orbiting a near-extreme Kerr black hole quickly plunge into the horizon after passing the innermost stable circular orbit. The plunge trajectory is shown to be related by a conformal map to a circular orbit. Conformal symmetry of the near-horizon region is then used to compute the gravitational radiation produced during the plunge phase.
Gravitational-wave astronomy has the potential to substantially advance our knowledge of the cosmos, from the most powerful astrophysical engines to the initial stages of our universe. Gravitational waves also carry information about the nature of bl ack holes. Here we investigate the potential of gravitational-wave detectors to test a proposal by Bekenstein and Mukhanov that the area of black hole horizons is quantized in units of the Planck area. Our results indicate that this quantization could have a potentially observable effect on the classical gravitational wave signals received by detectors. In particular, we find distorted gravitational-wave echoes in the post-merger waveform describing the inspiral and merger of two black holes. These echoes have a specific frequency content that is characteristic of black hole horizon area quantization.
93 - Leong Khim Wong 2020
The use of modern effective field theory techniques has sparked significant developments in many areas of physics, including the study of gravity. Case in point, such techniques have recently been used to show that binary black holes can amplify inci dent, low-frequency radiation due to an interplay between absorption at the horizons and momentum transfer in the bulk of the spacetime. In this paper, we further examine the consequences of this superradiant mechanism on the dynamics of an ambient scalar field by taking the binarys long-range gravitational potential into account at the nonperturbative level. Doing so allows us to capture the formation of scalar clouds that are gravitationally bound to the binary. If the scalar is light enough, the cloud can be sufficiently diffuse (i.e., dilute while having considerable spatial extent) that it engulfs the binary as a whole. Its subsequent evolution exhibits an immensely rich phenomenology, which includes exponential growth, beating patterns, and the upscattering of bound states into scalar waves. While we find that these effects have negligible influence on the binarys inspiral in the regime wherein our approximations are valid, they offer new, analytic insight into how binary black holes interact with external perturbations. They may also provide useful, qualitative intuition for interpreting the results from future numerical simulations of these complex systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا