ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of diffuse scalar clouds around binary black holes

94   0   0.0 ( 0 )
 نشر من قبل Leong Khim Wong
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Leong Khim Wong




اسأل ChatGPT حول البحث

The use of modern effective field theory techniques has sparked significant developments in many areas of physics, including the study of gravity. Case in point, such techniques have recently been used to show that binary black holes can amplify incident, low-frequency radiation due to an interplay between absorption at the horizons and momentum transfer in the bulk of the spacetime. In this paper, we further examine the consequences of this superradiant mechanism on the dynamics of an ambient scalar field by taking the binarys long-range gravitational potential into account at the nonperturbative level. Doing so allows us to capture the formation of scalar clouds that are gravitationally bound to the binary. If the scalar is light enough, the cloud can be sufficiently diffuse (i.e., dilute while having considerable spatial extent) that it engulfs the binary as a whole. Its subsequent evolution exhibits an immensely rich phenomenology, which includes exponential growth, beating patterns, and the upscattering of bound states into scalar waves. While we find that these effects have negligible influence on the binarys inspiral in the regime wherein our approximations are valid, they offer new, analytic insight into how binary black holes interact with external perturbations. They may also provide useful, qualitative intuition for interpreting the results from future numerical simulations of these complex systems.



قيم البحث

اقرأ أيضاً

Dynamics in the throat of rapidly rotating Kerr black holes is governed by an emergent near-horizon conformal symmetry. The throat contains unstable circular orbits at radii extending from the ISCO down to the light ring. We show that they are relate d by conformal transformations to physical plunges and osculating trajectories. These orbits have angular momentum arbitrarily higher than that of ISCO. Using the conformal symmetry we compute analytically the radiation produced by the physical orbits. We also present a simple formula for the full self-force on such trajectories in terms of the self-force on circular orbits.
We compute the albedo (or reflectivity) of electromagnetic waves off the electron-positron Hawking plasma that surrounds the horizon of a Quantum Black Hole. We adopt the modified firewall conjecture for fuzzballs [arXiv:hep-th/0502050,arXiv:1711.016 17], where we consider significant electromagnetic interaction around the horizon. While prior work has treated this problem as an electron-photon scattering process, we find that the incoming quanta interact collectively with the fermionic excitations of the Hawking plasma at low energies. We derive this via two different methods: one using relativistic plasma dispersion relation, and another using the one-loop correction to photon propagator. Both methods find that the reflectivity of long wavelength photons off the Hawking plasma is significant, contrary to previous claims. This leads to the enhancement of the electromagnetic albedo for frequencies comparable to the Hawking temperature of black hole horizons in vacuum. We comment on possible observable consequences of this effect.
108 - Manuel Arca Sedda 2020
In this paper, we explore the mechanisms that regulate the formation and evolution of stellar black hole binaries (BHBs) around supermassive black holes (SMBHs). We show that dynamical interactions can efficiently drive in-situ BHB formation if the S MBH is surrounded by a massive nuclear cluster (NC), while orbitally segregated star clusters can replenish the BHB reservoir in SMBH-dominated nuclei. We discuss how the combined action of stellar hardening and mass segregation sculpts the BHB orbital properties. We use direct N-body simulations including post-Newtonian corrections up to 2.5 order to study the BHB-SMBH interplay, showing that the Kozai-Lidov mechanism plays a crucial role in shortening binaries lifetime. We find that the merging probability weakly depends on the SMBH mass in the $10^6-10^9{rm ~M}_odot$ mass range, leading to a merger rate $Gamma simeq 3-8$ yr$^{-1}$ Gpc$^{-3}$ at redshift zero. Nearly $40%$ of the mergers have masses in the BH mass gap, $50-140{rm ~M}_odot$, thus indicating that galactic nuclei are ideal places to form BHs in this mass range. We argue that gravitational wave (GW) sources with components mass $m_1>40{rm ~M}_odot$ and $m_2<30{rm ~M}_odot$ would represent a strong indicator of a galactic nuclei origin. The majority of these mergers could be multiband GW sources in the local Universe: nearly $40%$ might be seen by LISA as eccentric sources and, a few years later, as circular sources by LIGO and the Einstein Telescope, making decihertz observatories like DECIGO unique instruments to bridge the observations during the binary inspiral.
While no-hair theorems forbid isolated black holes from possessing permanent moments beyond their mass, electric charge, and angular momentum, research over the past two decades has demonstrated that a black hole interacting with a time-dependent bac kground scalar field will gain an induced scalar charge. In this paper, we study this phenomenon from an effective field theory (EFT) perspective. We employ a novel approach to constructing the effective point-particle action for the black hole by integrating out a set of composite operators localized on its worldline. This procedure, carried out using the in-in formalism, enables a systematic accounting of both conservative and dissipative effects associated with the black holes horizon at the level of the action. We show that the induced scalar charge is inextricably linked to accretion of the background environment, as both effects stem from the same parent term in the effective action. The charge, in turn, implies that a black hole can radiate scalar waves and will also experience a fifth force. Our EFT correctly reproduces known results in the literature for massless scalars, but now also generalizes to massive real scalar fields, allowing us to consider a wider range of scenarios of astrophysical interest. As an example, we use our EFT to study the early inspiral of a black hole binary embedded in a fuzzy dark matter halo.
Most extreme-mass-ratio-inspirals of small compact objects into supermassive black holes end with a fast plunge from an eccentric last stable orbit. For rapidly rotating black holes such fast plunges may be studied in the context of the Kerr/CFT corr espondence because they occur in the near-horizon region where dynamics are governed by the infinite dimensional conformal symmetry. In this paper we use conformal transformations to analytically solve for the radiation emitted from fast plunges into near-extreme Kerr black holes. We find perfect agreement between the gravity and CFT computations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا