ﻻ يوجد ملخص باللغة العربية
Aspect-based sentiment analysis produces a list of aspect terms and their corresponding sentiments for a natural language sentence. This task is usually done in a pipeline manner, with aspect term extraction performed first, followed by sentiment predictions toward the extracted aspect terms. While easier to develop, such an approach does not fully exploit joint information from the two subtasks and does not use all available sources of training information that might be helpful, such as document-level labeled sentiment corpus. In this paper, we propose an interactive multi-task learning network (IMN) which is able to jointly learn multiple related tasks simultaneously at both the token level as well as the document level. Unlike conventional multi-task learning methods that rely on learning common features for the different tasks, IMN introduces a message passing architecture where information is iteratively passed to different tasks through a shared set of latent variables. Experimental results demonstrate superior performance of the proposed method against multiple baselines on three benchmark datasets.
The aspect-based sentiment analysis (ABSA) task remains to be a long-standing challenge, which aims to extract the aspect term and then identify its sentiment orientation.In previous approaches, the explicit syntactic structure of a sentence, which r
In this work, we propose a new model for aspect-based sentiment analysis. In contrast to previous approaches, we jointly model the detection of aspects and the classification of their polarity in an end-to-end trainable neural network. We conduct exp
Aspect-based sentiment analysis (ABSA) mainly involves three subtasks: aspect term extraction, opinion term extraction, and aspect-level sentiment classification, which are typically handled in a separate or joint manner. However, previous approaches
Aspect-based sentiment analysis (ABSA) aims at analyzing the sentiment of a given aspect in a sentence. Recently, neural network-based methods have achieved promising results in existing ABSA datasets. However, these datasets tend to degenerate to se
Recently, there has been an increasing interest in end-to-end speech recognition that directly transcribes speech to text without any predefined alignments. One approach is the attention-based encoder-decoder framework that learns a mapping between v