ترغب بنشر مسار تعليمي؟ اضغط هنا

Joint Aspect and Polarity Classification for Aspect-based Sentiment Analysis with End-to-End Neural Networks

115   0   0.0 ( 0 )
 نشر من قبل Martin Schmitt
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we propose a new model for aspect-based sentiment analysis. In contrast to previous approaches, we jointly model the detection of aspects and the classification of their polarity in an end-to-end trainable neural network. We conduct experiments with different neural architectures and word representations on the recent GermEval 2017 dataset. We were able to show considerable performance gains by using the joint modeling approach in all settings compared to pipeline approaches. The combination of a convolutional neural network and fasttext embeddings outperformed the best submission of the shared task in 2017, establishing a new state of the art.



قيم البحث

اقرأ أيضاً

Aspect-based sentiment analysis produces a list of aspect terms and their corresponding sentiments for a natural language sentence. This task is usually done in a pipeline manner, with aspect term extraction performed first, followed by sentiment pre dictions toward the extracted aspect terms. While easier to develop, such an approach does not fully exploit joint information from the two subtasks and does not use all available sources of training information that might be helpful, such as document-level labeled sentiment corpus. In this paper, we propose an interactive multi-task learning network (IMN) which is able to jointly learn multiple related tasks simultaneously at both the token level as well as the document level. Unlike conventional multi-task learning methods that rely on learning common features for the different tasks, IMN introduces a message passing architecture where information is iteratively passed to different tasks through a shared set of latent variables. Experimental results demonstrate superior performance of the proposed method against multiple baselines on three benchmark datasets.
The aspect-based sentiment analysis (ABSA) task remains to be a long-standing challenge, which aims to extract the aspect term and then identify its sentiment orientation.In previous approaches, the explicit syntactic structure of a sentence, which r eflects the syntax properties of natural language and hence is intuitively crucial for aspect term extraction and sentiment recognition, is typically neglected or insufficiently modeled. In this paper, we thus propose a novel dependency syntactic knowledge augmented interactive architecture with multi-task learning for end-to-end ABSA. This model is capable of fully exploiting the syntactic knowledge (dependency relations and types) by leveraging a well-designed Dependency Relation Embedded Graph Convolutional Network (DreGcn). Additionally, we design a simple yet effective message-passing mechanism to ensure that our model learns from multiple related tasks in a multi-task learning framework. Extensive experimental results on three benchmark datasets demonstrate the effectiveness of our approach, which significantly outperforms existing state-of-the-art methods. Besides, we achieve further improvements by using BERT as an additional feature extractor.
Aspect-category sentiment analysis (ACSA) aims to identify all the aspect categories mentioned in the text and their corresponding sentiment polarities. Some joint models have been proposed to address this task. However, these joint models do not sol ve the following two problems well: mismatching between the aspect categories and the sentiment words, and data deficiency of some aspect categories. To solve them, we propose a novel joint model which contains a contextualized aspect embedding layer and a shared sentiment prediction layer. The contextualized aspect embedding layer extracts the aspect category related information, which is used to generate aspect-specific representations for sentiment classification like traditional context-independent aspect embedding (CIAE) and is therefore called contextualized aspect embedding (CAE). The CAE can mitigate the mismatching problem because it is semantically more related to sentiment words than CIAE. The shared sentiment prediction layer transfers sentiment knowledge between aspect categories and alleviates the problem caused by data deficiency. Experiments conducted on SemEval 2016 Datasets show that our proposed model achieves state-of-the-art performance.
130 - Lu Xu , Lidong Bing , Wei Lu 2020
Aspect based sentiment analysis, predicting sentiment polarity of given aspects, has drawn extensive attention. Previous attention-based models emphasize using aspect semantics to help extract opinion features for classification. However, these works are either not able to capture opinion spans as a whole, or not able to capture variable-length opinion spans. In this paper, we present a neat and effective structured attention model by aggregating multiple linear-chain CRFs. Such a design allows the model to extract aspect-specific opinion spans and then evaluate sentiment polarity by exploiting the extracted opinion features. The experimental results on four datasets demonstrate the effectiveness of the proposed model, and our analysis demonstrates that our model can capture aspect-specific opinion spans.
Aspect-level sentiment classification aims to identify the sentiment expressed towards some aspects given context sentences. In this paper, we introduce an attention-over-attention (AOA) neural network for aspect level sentiment classification. Our a pproach models aspects and sentences in a joint way and explicitly captures the interaction between aspects and context sentences. With the AOA module, our model jointly learns the representations for aspects and sentences, and automatically focuses on the important parts in sentences. Our experiments on laptop and restaurant datasets demonstrate our approach outperforms previous LSTM-based architectures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا