ﻻ يوجد ملخص باللغة العربية
Recently, there has been an increasing interest in end-to-end speech recognition that directly transcribes speech to text without any predefined alignments. One approach is the attention-based encoder-decoder framework that learns a mapping between variable-length input and output sequences in one step using a purely data-driven method. The attention model has often been shown to improve the performance over another end-to-end approach, the Connectionist Temporal Classification (CTC), mainly because it explicitly uses the history of the target character without any conditional independence assumptions. However, we observed that the performance of the attention has shown poor results in noisy condition and is hard to learn in the initial training stage with long input sequences. This is because the attention model is too flexible to predict proper alignments in such cases due to the lack of left-to-right constraints as used in CTC. This paper presents a novel method for end-to-end speech recognition to improve robustness and achieve fast convergence by using a joint CTC-attention model within the multi-task learning framework, thereby mitigating the alignment issue. An experiment on the WSJ and CHiME-4 tasks demonstrates its advantages over both the CTC and attention-based encoder-decoder baselines, showing 5.4-14.6% relative improvements in Character Error Rate (CER).
Automatic Speech Recognition (ASR) using multiple microphone arrays has achieved great success in the far-field robustness. Taking advantage of all the information that each array shares and contributes is crucial in this task. Motivated by the advan
Recently, Transformer has gained success in automatic speech recognition (ASR) field. However, it is challenging to deploy a Transformer-based end-to-end (E2E) model for online speech recognition. In this paper, we propose the Transformer-based onlin
Long Short Term Memory Connectionist Temporal Classification (LSTM-CTC) based end-to-end models are widely used in speech recognition due to its simplicity in training and efficiency in decoding. In conventional LSTM-CTC based models, a bottleneck pr
Many of the current state-of-the-art Large Vocabulary Continuous Speech Recognition Systems (LVCSR) are hybrids of neural networks and Hidden Markov Models (HMMs). Most of these systems contain separate components that deal with the acoustic modellin
Despite the increasing research interest in end-to-end learning systems for speech emotion recognition, conventional systems either suffer from the overfitting due in part to the limited training data, or do not explicitly consider the different cont