ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic Proximal AUC Maximization

267   0   0.0 ( 0 )
 نشر من قبل Yunwen Lei
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we consider the problem of maximizing the Area under the ROC curve (AUC) which is a widely used performance metric in imbalanced classification and anomaly detection. Due to the pairwise nonlinearity of the objective function, classical SGD algorithms do not apply to the task of AUC maximization. We propose a novel stochastic proximal algorithm for AUC maximization which is scalable to large scale streaming data. Our algorithm can accommodate general penalty terms and is easy to implement with favorable $O(d)$ space and per-iteration time complexities. We establish a high-probability convergence rate $O(1/sqrt{T})$ for the general convex setting, and improve it to a fast convergence rate $O(1/T)$ for the cases of strongly convex regularizers and no regularization term (without strong convexity). Our proof does not need the uniform boundedness assumption on the loss function or the iterates which is more fidelity to the practice. Finally, we perform extensive experiments over various benchmark data sets from real-world application domains which show the superior performance of our algorithm over the existing AUC maximization algorithms.

قيم البحث

اقرأ أيضاً

215 - Soham Dan , Dushyant Sahoo 2019
Stochastic Gradient Descent has been widely studied with classification accuracy as a performance measure. However, these stochastic algorithms cannot be directly used when non-decomposable pairwise performance measures are used such as Area under th e ROC curve (AUC) which is a common performance metric when the classes are imbalanced. There have been several algorithms proposed for optimizing AUC as a performance metric, and one of the recent being a stochastic proximal gradient algorithm (SPAM). But the downside of the stochastic methods is that they suffer from high variance leading to slower convergence. To combat this issue, several variance reduced methods have been proposed with faster convergence guarantees than vanilla stochastic gradient descent. Again, these variance reduced methods are not directly applicable when non-decomposable performance measures are used. In this paper, we develop a Variance Reduced Stochastic Proximal algorithm for AUC Maximization (textsc{VRSPAM}) and perform a theoretical analysis as well as empirical analysis to show that our algorithm converges faster than SPAM which is the previous state-of-the-art for the AUC maximization problem.
In this paper, we discuss the problem of minimizing the sum of two convex functions: a smooth function plus a non-smooth function. Further, the smooth part can be expressed by the average of a large number of smooth component functions, and the non-s mooth part is equipped with a simple proximal mapping. We propose a proximal stochastic second-order method, which is efficient and scalable. It incorporates the Hessian in the smooth part of the function and exploits multistage scheme to reduce the variance of the stochastic gradient. We prove that our method can achieve linear rate of convergence.
In this paper, we study distributed algorithms for large-scale AUC maximization with a deep neural network as a predictive model. Although distributed learning techniques have been investigated extensively in deep learning, they are not directly appl icable to stochastic AUC maximization with deep neural networks due to its striking differences from standard loss minimization problems (e.g., cross-entropy). Towards addressing this challenge, we propose and analyze a communication-efficient distributed optimization algorithm based on a {it non-convex concave} reformulation of the AUC maximization, in which the communication of both the primal variable and the dual variable between each worker and the parameter server only occurs after multiple steps of gradient-based updates in each worker. Compared with the naive parallel version of an existing algorithm that computes stochastic gradients at individual machines and averages them for updating the model parameters, our algorithm requires a much less number of communication rounds and still achieves a linear speedup in theory. To the best of our knowledge, this is the textbf{first} work that solves the {it non-convex concave min-max} problem for AUC maximization with deep neural networks in a communication-efficient distributed manner while still maintaining the linear speedup property in theory. Our experiments on several benchmark datasets show the effectiveness of our algorithm and also confirm our theory.
Deep AUC (area under the ROC curve) Maximization (DAM) has attracted much attention recently due to its great potential for imbalanced data classification. However, the research on Federated Deep AUC Maximization (FDAM) is still limited. Compared wit h standard federated learning (FL) approaches that focus on decomposable minimization objectives, FDAM is more complicated due to its minimization objective is non-decomposable over individual examples. In this paper, we propose improved FDAM algorithms for heterogeneous data by solving the popular non-convex strongly-concave min-max formulation of DAM in a distributed fashion, which can also be applied to a class of non-convex strongly-concave min-max problems. A striking result of this paper is that the communication complexity of the proposed algorithm is a constant independent of the number of machines and also independent of the accuracy level, which improves an existing result by orders of magnitude. The experiments have demonstrated the effectiveness of our FDAM algorithm on benchmark datasets, and on medical chest X-ray images from different organizations. Our experiment shows that the performance of FDAM using data from multiple hospitals can improve the AUC score on testing data from a single hospital for detecting life-threatening diseases based on chest radiographs. The proposed method is implemented in our open-sourced library LibAUC (www.libauc.org) whose github address is https://github.com/Optimization-AI/ICML2021_FedDeepAUC_CODASCA.
This paper introduces two simple techniques to improve off-policy Reinforcement Learning (RL) algorithms. First, we formulate off-policy RL as a stochastic proximal point iteration. The target network plays the role of the variable of optimization an d the value network computes the proximal operator. Second, we exploits the two value functions commonly employed in state-of-the-art off-policy algorithms to provide an improved action value estimate through bootstrapping with limited increase of computational resources. Further, we demonstrate significant performance improvement over state-of-the-art algorithms on standard continuous-control RL benchmarks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا