ترغب بنشر مسار تعليمي؟ اضغط هنا

Meta-Learning via Learned Loss

138   0   0.0 ( 0 )
 نشر من قبل Sarah Bechtle
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Typically, loss functions, regularization mechanisms and other important aspects of training parametric models are chosen heuristically from a limited set of options. In this paper, we take the first step towards automating this process, with the view of producing models which train faster and more robustly. Concretely, we present a meta-learning method for learning parametric loss functions that can generalize across different tasks and model architectures. We develop a pipeline for meta-training such loss functions, targeted at maximizing the performance of the model trained under them. The loss landscape produced by our learned losses significantly improves upon the original task-specific losses in both supervised and reinforcement learning tasks. Furthermore, we show that our meta-learning framework is flexible enough to incorporate additional information at meta-train time. This information shapes the learned loss function such that the environment does not need to provide this information during meta-test time. We make our code available at https://sites.google.com/view/mlthree.



قيم البحث

اقرأ أيضاً

Temporal abstractions in the form of options have been shown to help reinforcement learning (RL) agents learn faster. However, despite prior work on this topic, the problem of discovering options through interaction with an environment remains a chal lenge. In this paper, we introduce a novel meta-gradient approach for discovering useful options in multi-task RL environments. Our approach is based on a manager-worker decomposition of the RL agent, in which a manager maximises rewards from the environment by learning a task-dependent policy over both a set of task-independent discovered-options and primitive actions. The option-reward and termination functions that define a subgoal for each option are parameterised as neural networks and trained via meta-gradients to maximise their usefulness. Empirical analysis on gridworld and DeepMind Lab tasks show that: (1) our approach can discover meaningful and diverse temporally-extended options in multi-task RL domains, (2) the discovered options are frequently used by the agent while learning to solve the training tasks, and (3) that the discovered options help a randomly initialised manager learn faster in completely new tasks.
Biological evolution has distilled the experiences of many learners into the general learning algorithms of humans. Our novel meta reinforcement learning algorithm MetaGenRL is inspired by this process. MetaGenRL distills the experiences of many comp lex agents to meta-learn a low-complexity neural objective function that decides how future individuals will learn. Unlike recent meta-RL algorithms, MetaGenRL can generalize to new environments that are entirely different from those used for meta-training. In some cases, it even outperforms human-engineered RL algorithms. MetaGenRL uses off-policy second-order gradients during meta-training that greatly increase its sample efficiency.
Intelligent agents rely heavily on prior experience when learning a new task, yet most modern reinforcement learning (RL) approaches learn every task from scratch. One approach for leveraging prior knowledge is to transfer skills learned on prior tas ks to the new task. However, as the amount of prior experience increases, the number of transferable skills grows too, making it challenging to explore the full set of available skills during downstream learning. Yet, intuitively, not all skills should be explored with equal probability; for example information about the current state can hint which skills are promising to explore. In this work, we propose to implement this intuition by learning a prior over skills. We propose a deep latent variable model that jointly learns an embedding space of skills and the skill prior from offline agent experience. We then extend common maximum-entropy RL approaches to use skill priors to guide downstream learning. We validate our approach, SPiRL (Skill-Prior RL), on complex navigation and robotic manipulation tasks and show that learned skill priors are essential for effective skill transfer from rich datasets. Videos and code are available at https://clvrai.com/spirl.
Demonstration-guided reinforcement learning (RL) is a promising approach for learning complex behaviors by leveraging both reward feedback and a set of target task demonstrations. Prior approaches for demonstration-guided RL treat every new task as a n independent learning problem and attempt to follow the provided demonstrations step-by-step, akin to a human trying to imitate a completely unseen behavior by following the demonstrators exact muscle movements. Naturally, such learning will be slow, but often new behaviors are not completely unseen: they share subtasks with behaviors we have previously learned. In this work, we aim to exploit this shared subtask structure to increase the efficiency of demonstration-guided RL. We first learn a set of reusable skills from large offline datasets of prior experience collected across many tasks. We then propose Skill-based Learning with Demonstrations (SkiLD), an algorithm for demonstration-guided RL that efficiently leverages the provided demonstrations by following the demonstrated skills instead of the primitive actions, resulting in substantial performance improvements over prior demonstration-guided RL approaches. We validate the effectiveness of our approach on long-horizon maze navigation and complex robot manipulation tasks.
Empirical Risk Minimization (ERM) based machine learning algorithms have suffered from weak generalization performance on data obtained from out-of-distribution (OOD). To address this problem, Invariant Risk Minimization (IRM) objective was suggested to find invariant optimal predictor which is less affected by the changes in data distribution. However, even with such progress, IRMv1, the practical formulation of IRM, still shows performance degradation when there are not enough training data, and even fails to generalize to OOD, if the number of spurious correlations is larger than the number of environments. In this paper, to address such problems, we propose a novel meta-learning based approach for IRM. In this method, we do not assume the linearity of classifier for the ease of optimization, and solve ideal bi-level IRM objective with Model-Agnostic Meta-Learning (MAML) framework. Our method is more robust to the data with spurious correlations and can provide an invariant optimal classifier even when data from each distribution are scarce. In experiments, we demonstrate that our algorithm not only has better OOD generalization performance than IRMv1 and all IRM variants, but also addresses the weakness of IRMv1 with improved stability.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا