ﻻ يوجد ملخص باللغة العربية
Accretion disks can be eccentric: they support $m=1$ modes that are global and slowly precessing. But whether the modes remain trapped in the disk---and hence are long-lived---depends on conditions at the outer edge of the disk. Here we show that in disks with realistic boundaries, in which the surface density drops rapidly beyond a given radius, eccentric modes are trapped and hence long-lived. We focus on pressure-only disks around a central mass, and show how this result can be understood with the help of a simple second-order WKB theory. We show that the longest lived mode is the zero-node mode in which all of the disks elliptical streamlines are aligned, and that this mode decays coherently on the viscous timescale of the disk. Hence such a mode, once excited, will live for the lifetime of the disk. It may be responsible for asymmetries seen in recent images of protoplanetary disks.
WISEA J080822.18-644357.3, an M star in the Carina association, exhibits extreme infrared excess and accretion activity at an age greater than the expected accretion disk lifetime. We consider J0808 as the prototypical example of a class of M star ac
Planet migration originally refers to protoplanetary disks, which are more massive and dense than typical accretion disks in binary systems. We study planet migration in an accretion disk in a binary system consisting of a solar-like star hosting a p
It has recently been shown that the inner region of protoplanetary disks (PPDs) is governed by wind-driven accretion, and the resulting accretion flow showing complex vertical profiles. Such complex flow structures are further enhanced due to the Hal
Radioactive nuclei play an important role in planetary evolution by providing an internal heat source, which affects planetary structure and helps facilitate plate tectonics. A minimum level of nuclear activity is thought to be necessary --- but not
(Abridged) The birth environment of the Sun will have influenced the conditions in the pre-solar nebula, including the attainable chemical complexity, important for prebiotic chemistry. The formation and distribution of complex organic molecules (COM