ترغب بنشر مسار تعليمي؟ اضغط هنا

Complex organic molecules along the accretion flow in isolated and externally irradiated protoplanetary disks

262   0   0.0 ( 0 )
 نشر من قبل Catherine Walsh
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Catherine Walsh




اسأل ChatGPT حول البحث

(Abridged) The birth environment of the Sun will have influenced the conditions in the pre-solar nebula, including the attainable chemical complexity, important for prebiotic chemistry. The formation and distribution of complex organic molecules (COMs) in a disk around a T Tauri star is investigated for two scenarios: (i) an isolated disk, and (ii) a disk irradiated externally by a nearby massive star. The chemistry is calculated along the accretion flow from the outer disk inwards using a comprehensive network. Two simulations are performed, one beginning with complex ices and one with simple ices only. For the isolated disk, COMs are transported without major alteration into the inner disk where they thermally desorb into the gas reaching an abundance representative of the initial assumed ice abundance. For simple ices, COMs efficiently form on grain surfaces under the conditions in the outer disk. Gas-phase COMs are released into the molecular layer via photodesorption. For the irradiated disk, complex ices are also transported inwards; however, they undergo thermal processing caused by the warmer conditions in the irradiated disk which tends to reduce their abundance along the accretion flow. For simple ices, grain-surface chemistry cannot synthesise COMs in the outer disk because the necessary grain-surface radicals, which tend to be particularly volatile, are not sufficiently abundant on the grain surfaces. Gas-phase COMs are formed in the inner region of the irradiated disk via gas-phase chemistry induced by the desorption of strongly bound molecules such as methanol; hence, the abundances are not representative of the initial molecular abundances injected into the outer disk. These results suggest that the composition of comets formed in isolated disks may differ from those formed in externally irradiated disks with the latter composed of more simple ices.



قيم البحث

اقرأ أيضاً

248 - Catherine Walsh 2014
(Abridged) Protoplanetary disks are vital objects in star and planet formation, possessing all the material which may form a planetary system orbiting the new star. We investigate the synthesis of complex organic molecules (COMs) in disks to constrai n the achievable chemical complexity and predict species and transitions which may be observable with ALMA. We have coupled a 2D model of a protoplanetary disk around a T Tauri star with a gas-grain chemical network including COMs. We compare compare synthesised line intensities and calculated column densities with observations and determine those COMs which may be observable in future. COMs are efficiently formed in the disk midplane via grain-surface chemical reactions, reaching peak grain-surface fractional abundances 1e-6 - 1e-4 that of the H nuclei number density. COMs formed on grain surfaces are returned to the gas phase via non-thermal desorption; however, gas-phase species reach lower fractional abundances than their grain-surface equivalents, 1e-12 - 1e-7. Including the irradiation of grain mantle material helps build further complexity in the ice through the replenishment of grain-surface radicals which take part in further grain-surface reactions. There is reasonable agreement with several line transitions of H2CO observed towards several T Tauri star-disk systems. The synthesised line intensities for CH3OH are consistent with upper limits determined towards all sources. Our models suggest CH3OH should be readily observable in nearby protoplanetary disks with ALMA; however, detection of more complex species may prove challenging. Our grain-surface abundances are consistent with those derived from cometary comae observations providing additional evidence for the hypothesis that comets (and other planetesimals) formed via the coagulation of icy grains in the Suns natal disk.
We investigate the presence of COMs in strongly UV-irradiated interstellar molecular gas. We have carried out a complete millimetre line survey using the IRAM30m telescope towards the edge of the Orion Bar photodissociation region (PDR), close to the H2 dissociation front, a position irradiated by a very intense far-UV (FUV) radiation field. These observations have been complemented with 8.5 arcsec resolution maps of the H2CO 5(1,5)-4(1,4) and C18O 3-2 emission at 0.9 mm. Despite being a harsh environment, we detect more than 250 lines from COMs and related precursors: H2CO, CH3OH, HCO, H2CCO, CH3CHO, H2CS, HCOOH, CH3CN, CH2NH, HNCO, H13-2CO, and HC3N (in decreasing order of abundance). For each species, the large number of detected lines allowed us to accurately constrain their rotational temperatures (Trot) and column densities (N). Owing to subthermal excitation and intricate spectroscopy of some COMs (symmetric- and asymmetric-top molecules such as CH3CN and H2CO, respectively), a correct determination of N and Trot requires building rotational population diagrams of their rotational ladders separately. We also provide accurate upper limit abundances for chemically related molecules that might have been expected, but are not conclusively detected at the edge of the PDR (HDCO, CH3O, CH3NC, CH3CCH, CH3OCH3, HCOOCH3, CH3CH2OH, CH3CH2CN, and CH2CHCN). A non-LTE LVG excitation analysis for molecules with known collisional rate coefficients, suggests that some COMs arise from different PDR layers but we cannot resolve them spatially. In particular, H2CO and CH3CN survive in the extended gas directly exposed to the strong FUV flux (Tk = 150-250 K and Td > 60 K), whereas CH3OH only arises from denser and cooler gas clumps in the more shielded PDR interior (Tk = 40-50 K). We find a HCO/H2CO/CH3OH = 1/5/3 abundance ratio. These ratios are different from those inferred in hot cores and shocks.
104 - Zitao Hu , Xue-Ning Bai 2021
It has recently been shown that the inner region of protoplanetary disks (PPDs) is governed by wind-driven accretion, and the resulting accretion flow showing complex vertical profiles. Such complex flow structures are further enhanced due to the Hal l effect, especially when the background magnetic field is aligned with disk rotation. We investigate how such flow structures impact global dust transport via Monte-Carlo simulations, focusing on two scenarios. In the first scenario, the toroidal magnetic field is maximized in the miplane, leading to accretion and decretion flows above and below. In the second scenario, the toroidal field changes sign across the midplane, leading to an accretion flow at the disk midplane, with decretion flows above and below. We find that in both cases, the contribution from additional gas flows can still be accurately incorporated into the advection-diffusion framework for vertically-integrated dust transport, with enhanced dust radial diffusion up to an effective $alpha^{rm eff}sim10^{-2}$ for strongly coupled dust, even when background turbulence is weak $alpha<10^{-4}$. Dust radial drift is also modestly enhanced in the second scenario. We provide a general analytical theory that accurately reproduces our simulation results, thus establishing a framework to model global dust transport that realistically incorporates vertical gas flow structures. We also note that the theory is equally applicable to the transport of chemical species.
Computing the flow from externally FUV irradiated protoplanetary discs requires solving complicated and expensive photodissociation physics iteratively in conjunction with hydrodynamics. Previous studies have therefore been limited to 1D models of th is process. In this paper we compare 2D-axisymmetric models of externally photoevaporating discs with their 1D analogues, finding that mass loss rates are consistent to within a factor four. The mass loss rates in 2D are higher, in part because half of the mass loss comes from the disc surface (which 1D models neglect). 1D mass loss rates used as the basis for disc viscous evolutionary calculations are hence expected to be conservative. We study the anatomy of externally driven winds including the streamline morphology, kinematic, thermal and chemical structure. A key difference between the 1D and 2D models is in the chemical abundances. For instance in the 2D models CO can be dissociated at smaller radial distances from the disc outer edge than in 1D calculations because gas is photodissociated by radiation along trajectories that are assumed infinitely optically thick in 1D models. Multidimensional models will hence be critical for predicting observable signatures of environmentally photoevaporating protoplanetary discs.
122 - Sun Kwok 2019
The late stages of stellar evolution from asymptotic giant branch stars to planetary nebulae are now known to be an active phase of molecular synthesis. Over 80 gas-phase molecules have been detected through rotational transitions in the mm/submm reg ion. Infrared spectroscopy has also detected inorganic minerals, fullerenes, and organic solids. The synthesis of these molecules and solids take place over very low density ($<10^6$ cm$^{-3}$) and short ($sim10^3$ yr) time scales. The complex organics are observed to have mixed aromatic/aliphatic structures and may be related to the complex organics found in meteorites, comets, interplanetary dust particles, and planetary satellites. The possible links between stellar and solar system organics is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا