ترغب بنشر مسار تعليمي؟ اضغط هنا

Peter Pan Disks: Long-lived Accretion Disks Around Young M Stars

84   0   0.0 ( 0 )
 نشر من قبل Steven Silverberg
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

WISEA J080822.18-644357.3, an M star in the Carina association, exhibits extreme infrared excess and accretion activity at an age greater than the expected accretion disk lifetime. We consider J0808 as the prototypical example of a class of M star accretion disks at ages $gtrsim 20$ Myr, which we call ``Peter Pan disks, since they apparently refuse to grow up. We present four new Peter Pan disk candidates identified via the Disk Detective citizen science project, coupled with textit{Gaia} astrometry. We find that WISEA J044634.16-262756.1 and WISEA J094900.65-713803.1 both exhibit significant infrared excess after accounting for nearby stars within the 2MASS beams. The J0446 system has $>95%$ likelihood of Columba membership. The J0949 system shows $>95%$ likelihood of Carina membership. We present new GMOS optical spectra of all four objects, showing possible accretion signatures on all four stars. We present ground-based and textit{TESS} lightcurves of J0808 and 2MASS J0501-4337, including a large flare and aperiodic dipping activity on J0808, and strong periodicity on J0501. We find Pa$beta$ and Br$gamma$ emission indicating ongoing accretion in near-IR spectroscopy of J0808. Using observed characteristics of these systems, we discuss mechanisms that lead to accretion disks at ages $gtrsim20$ Myr, and find that these objects most plausibly represent long-lived CO-poor primordial disks, or ``hybrid disks, exhibiting both debris- and primordial-disk features. The question remains: why have gas-rich disks persisted so long around these particular stars?



قيم البحث

اقرأ أيضاً

70 - A. Moor , M. Cure , A. Kospal 2017
According to the current paradigm of circumstellar disk evolution, gas-rich primordial disks evolve into gas-poor debris disks compose of second-generation dust. To explore the transition between these phases, we searched for $^{12}$CO, $^{13}$CO, an d C$^{18}$O emission in seven dust-rich debris disks around young A-type stars, using ALMA in Band 6. We discovered molecular gas in three debris disks. In all these disks, the $^{12}$CO line was optically thick, highlighting the importance of less abundant molecules in reliable mass estimates. Supplementing our target list by literature data, we compiled a volume-limited sample of dust-rich debris disks around young A-type stars within 150 pc. We obtained a CO detection rate of 11/16 above a $^{12}$CO J=2$-$1 line luminosity threshold of $sim 1.4 times 10 ^4$ Jykms$^{-1}$pc$^2$ in the sample. This high incidence implies that the presence of CO gas in bright debris disks around young A-type stars is likely more the rule than the exception. Interestingly, dust-rich debris disks around young FG-type stars exhibit, with the same detectability threshold as for A-type stars, significantly lower gas incidence. While the transition from protoplanetary to debris phase is associated with a drop of dust content, our results exhibit a large spread in the CO mass in our debris sample, with peak values comparable to those in protoplanetary Herbig Ae disks. In the particularly CO-rich debris systems the gas may have primordial origin, characteristic of a hybrid disk.
439 - C. Tapia , S. Lizano 2017
We calculate the emission of protoplanetary disks threaded by a poloidal magnetic field and irradiated by the central star. The radial structure of these disks was studied by Shu and collaborators and the vertical structure was studied by Lizano and collaborators. We consider disks around low mass protostars, T Tauri stars, and FU Ori stars with different mass-to-flux ratios $lambda_{rm sys}$. We calculate the spectral energy distribution and the antenna temperature profiles at 1 mm and 7 mm convolved with the ALMA and VLA beams. We find that disks with weaker magnetization (high values of $lambda_{rm sys}$) emit more than disks with stronger magnetization (low values of $lambda_{rm sys}$). This happens because the former are denser, hotter and have larger aspect ratios, receiving more irradiation from the central star. The level of magnetization also affects the optical depth at millimeter wavelengths, being larger for disks with high $lambda_{rm sys}$. In general, disks around low mass protostars and T Tauri stars are optically thin at 7 mm while disks around FU Ori are optically thick. A qualitative comparison of the emission of these magnetized disks, including heating by an external envelope, with the observed millimeter antenna temperature profiles of HL Tau indicates that large cm grains are required to increase the optical depth and reproduce the observed 7 mm emission at large radii.
Recent observations have suggested that circumstellar disks may commonly form around young stellar objects. Although the formation of circumstellar disks can be a natural result of the conservation of angular momentum in the parent cloud, theoretical studies instead show disk formation to be difficult from dense molecular cores magnetized to a realistic level, owing to efficient magnetic braking that transports a large fraction of the angular momentum away from the circumstellar region. We review recent progress in the formation and early evolution of disks around young stellar objects of both low-mass and high-mass, with an emphasis on mechanisms that may bridge the gap between observation and theory, including non-ideal MHD effects and asymmetric perturbations in the collapsing core (e.g., magnetic field misalignment and turbulence). We also address the associated processes of outflow launching and the formation of multiple systems, and discuss possible implications in properties of protoplanetary disks.
82 - E. Sanchis , L. Testi , A. Natta 2019
We present new 890 $mu m$ continuum ALMA observations of 5 brown dwarfs (BDs) with infrared excess in Lupus I and III -- which, in combination with 4 BDs previously observed, allowed us to study the mm properties of the full known BD disk population of one star-forming region. Emission is detected in 5 out of the 9 BD disks. Dust disk mass, brightness profiles and characteristic sizes of the BD population are inferred from continuum flux and modeling of the observations. Only one source is marginally resolved, allowing for the determination of its disk characteristic size. We conduct a demographic comparison between the properties of disks around BDs and stars in Lupus. Due to the small sample size, we cannot confirm or disprove if the disk mass over stellar mass ratio drops for BDs, as suggested for Ophiuchus. Nevertheless, we find that all detected BD disks have an estimated dust mass between 0.2 and 3.2 $M_{bigoplus}$; these results suggest that the measured solid masses in BD disks can not explain the observed exoplanet population, analogous to earlier findings on disks around more massive stars. Combined with the low estimated accretion rates, and assuming that the mm-continuum emission is a reliable proxy for the total disk mass, we derive ratios of $dot{M}_{mathrm{acc}} / M_{mathrm{disk}}$ significantly lower than in disks around more massive stars. If confirmed with more accurate measurements of disk gas masses, this result could imply a qualitatively different relationship between disk masses and inward gas transport in BD disks.
Peter Pan discs are a recently discovered class of long-lived discs around low-mass stars that survive for an order of magnitude longer than typical discs. In this paper we use disc evolutionary models to determine the required balance between initia l conditions and the magnitude of dispersal processes for Peter Pan discs to be primordial. We find that we require low transport ($alphasim10^{-4}$), extremely low external photoevaporation ($leq10^{-9}{rm M_{odot}/yr}$), and relatively high disc masses ($>0.25M_*$) to produce discs with ages and accretion rates consistent with Peter Pan discs. Higher transport ($alpha = 10^{-3}$) results in disc lifetimes that are too short and even lower transport ($alpha = 10^{-5}$) leads to accretion rates smaller than those observed. The required external photoevaporation rates are so low that primordial Peter Pan discs will have formed in rare environments on the periphery of low-mass star-forming regions, or deeply embedded, and as such have never subsequently been exposed to higher amounts of UV radiation. Given that such an external photoevaporation scenario is rare, the required disc parameters and accretion properties may reflect the initial conditions and accretion rates of a much larger fraction of the discs around low-mass stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا