ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotic approach for backward stochastic differential equation with singular terminal condition *

66   0   0.0 ( 0 )
 نشر من قبل Alexandre Popier
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we provide a one-to-one correspondence between the solution Y of a BSDE with singular terminal condition and the solution H of a BSDE with singular generator. This result provides the precise asymptotic behavior of Y close to the final time and enlarges the uniqueness result to a wider class of generators.



قيم البحث

اقرأ أيضاً

We solve a class of BSDE with a power function $f(y) = y^q$, $q > 1$, driving its drift and with the terminal boundary condition $ xi = infty cdot mathbf{1}_{B(m,r)^c}$ (for which $q > 2$ is assumed) or $ xi = infty cdot mathbf{1}_{B(m,r)}$, where $B (m,r)$ is the ball in the path space $C([0,T])$ of the underlying Brownian motion centered at the constant function $m$ and radius $r$. The solution involves the derivation and solution of a related heat equation in which $f$ serves as a reaction term and which is accompanied by singular and discontinuous Dirichlet boundary conditions. Although the solution of the heat equation is discontinuous at the corners of the domain the BSDE has continuous sample paths with the prescribed terminal value.
We consider a class of Backward Stochastic Differential Equations with superlinear driver process $f$ adapted to a filtration supporting at least a $d$ dimensional Brownian motion and a Poisson random measure on ${mathbb R}^m- {0}.$ We consider the f ollowing class of terminal conditions $xi_1 = infty cdot 1_{{tau_1 le T}}$ where $tau_1$ is any stopping time with a bounded density in a neighborhood of $T$ and $xi_2 = infty cdot 1_{A_T}$ where $A_t$, $t in [0,T]$ is a decreasing sequence of events adapted to the filtration ${mathcal F}_t$ that is continuous in probability at $T$. A special case for $xi_2$ is $A_T = {tau_2 > T}$ where $tau_2$ is any stopping time such that $P(tau_2 =T) =0.$ In this setting we prove that the minimal supersolutions of the BSDE are in fact solutions, i.e., they attain almost surely their terminal values. We further show that the first exit time from a time varying domain of a $d$-dimensional diffusion process driven by the Brownian motion with strongly elliptic covariance matrix does have a continuous density; therefore such exit times can be used as $tau_1$ and $tau_2$ to define the terminal conditions $xi_1$ and $xi_2.$ The proof of existence of the density is based on the classical Greens functions for the associated PDE.
In this paper, we consider the backward stochastic differential equation (BSDE) with generator $f(y)|z|^2,$ where the function $f$ is defined on an open interval $D$ and locally integrable. The existence and uniqueness of bounded solutions and $L^p(p geq1)$ solutions of such BSDEs are obtained. Some comparison theorems and a converse comparison theorem of such BSDEs are established. As an application, we give a probabilistic interpretation of viscosity solution of quadratic PDEs.
Mathematical mean-field approaches play an important role in different fields of Physics and Chemistry, but have found in recent works also their application in Economics, Finance and Game Theory. The objective of our paper is to investigate a specia l mean-field problem in a purely stochastic approach: for the solution $(Y,Z)$ of a mean-field backward stochastic differential equation driven by a forward stochastic differential of McKean--Vlasov type with solution $X$ we study a special approximation by the solution $(X^N,Y^N,Z^N)$ of some decoupled forward--backward equation which coefficients are governed by $N$ independent copies of $(X^N,Y^N,Z^N)$. We show that the convergence speed of this approximation is of order $1/sqrt{N}$. Moreover, our special choice of the approximation allows to characterize the limit behavior of $sqrt{N}(X^N-X,Y^N-Y,Z^N-Z)$. We prove that this triplet converges in law to the solution of some forward--backward stochastic differential equation of mean-field type, which is not only governed by a Brownian motion but also by an independent Gaussian field.
452 - Shige Peng , Zhe Yang 2009
In this paper we discuss new types of differential equations which we call anticipated backward stochastic differential equations (anticipated BSDEs). In these equations the generator includes not only the values of solutions of the present but also the future. We show that these anticipated BSDEs have unique solutions, a comparison theorem for their solutions, and a duality between them and stochastic differential delay equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا