ترغب بنشر مسار تعليمي؟ اضغط هنا

Backward Stochastic Differential Equations with Nonmarkovian Singular Terminal Values

100   0   0.0 ( 0 )
 نشر من قبل Alexandre Popier
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We solve a class of BSDE with a power function $f(y) = y^q$, $q > 1$, driving its drift and with the terminal boundary condition $ xi = infty cdot mathbf{1}_{B(m,r)^c}$ (for which $q > 2$ is assumed) or $ xi = infty cdot mathbf{1}_{B(m,r)}$, where $B(m,r)$ is the ball in the path space $C([0,T])$ of the underlying Brownian motion centered at the constant function $m$ and radius $r$. The solution involves the derivation and solution of a related heat equation in which $f$ serves as a reaction term and which is accompanied by singular and discontinuous Dirichlet boundary conditions. Although the solution of the heat equation is discontinuous at the corners of the domain the BSDE has continuous sample paths with the prescribed terminal value.



قيم البحث

اقرأ أيضاً

We consider a class of Backward Stochastic Differential Equations with superlinear driver process $f$ adapted to a filtration supporting at least a $d$ dimensional Brownian motion and a Poisson random measure on ${mathbb R}^m- {0}.$ We consider the f ollowing class of terminal conditions $xi_1 = infty cdot 1_{{tau_1 le T}}$ where $tau_1$ is any stopping time with a bounded density in a neighborhood of $T$ and $xi_2 = infty cdot 1_{A_T}$ where $A_t$, $t in [0,T]$ is a decreasing sequence of events adapted to the filtration ${mathcal F}_t$ that is continuous in probability at $T$. A special case for $xi_2$ is $A_T = {tau_2 > T}$ where $tau_2$ is any stopping time such that $P(tau_2 =T) =0.$ In this setting we prove that the minimal supersolutions of the BSDE are in fact solutions, i.e., they attain almost surely their terminal values. We further show that the first exit time from a time varying domain of a $d$-dimensional diffusion process driven by the Brownian motion with strongly elliptic covariance matrix does have a continuous density; therefore such exit times can be used as $tau_1$ and $tau_2$ to define the terminal conditions $xi_1$ and $xi_2.$ The proof of existence of the density is based on the classical Greens functions for the associated PDE.
In this paper, we provide a one-to-one correspondence between the solution Y of a BSDE with singular terminal condition and the solution H of a BSDE with singular generator. This result provides the precise asymptotic behavior of Y close to the final time and enlarges the uniqueness result to a wider class of generators.
464 - Shige Peng , Zhe Yang 2009
In this paper we discuss new types of differential equations which we call anticipated backward stochastic differential equations (anticipated BSDEs). In these equations the generator includes not only the values of solutions of the present but also the future. We show that these anticipated BSDEs have unique solutions, a comparison theorem for their solutions, and a duality between them and stochastic differential delay equations.
99 - Ying Hu , Xun Li , Jiaqiang Wen 2019
In this paper, we study the solvability of anticipated backward stochastic differential equations (BSDEs, for short) with quadratic growth for one-dimensional case and multi-dimensional case. In these BSDEs, the generator, which is of quadratic growt h in Z, involves not only the present information of solution (Y, Z) but also its future one. The existence and uniqueness of such BSDEs, under different conditions, are derived for several terminal situations, including small terminal value, bounded terminal value and unbounded terminal value.
The BMO martingale theory is extensively used to study nonlinear multi-dimensional stochastic equations (SEs) in $cR^p$ ($pin [1, infty)$) and backward stochastic differential equations (BSDEs) in $cR^ptimes cH^p$ ($pin (1, infty)$) and in $cR^inftyt imes bar{cH^infty}^{BMO}$, with the coefficients being allowed to be unbounded. In particular, the probabilistic version of Feffermans inequality plays a crucial role in the development of our theory, which seems to be new. Several new results are consequently obtained. The particular multi-dimensional linear case for SDEs and BSDEs are separately investigated, and the existence and uniqueness of a solution is connected to the property that the elementary solutions-matrix for the associated homogeneous SDE satisfies the reverse Holder inequality for some suitable exponent $pge 1$. Finally, we establish some relations between Kazamakis quadratic critical exponent $b(M)$ of a BMO martingale $M$ and the spectral radius of the solution operator for the $M$-driven SDE, which lead to a characterization of Kazamakis quadratic critical exponent of BMO martingales being infinite.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا