ترغب بنشر مسار تعليمي؟ اضغط هنا

Swift observations of the 2015 outburst of AG Peg -- from slow nova to classical symbiotic outburst

86   0   0.0 ( 0 )
 نشر من قبل Gavin Ramsay
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Gavin Ramsay




اسأل ChatGPT حول البحث

Symbiotic stars often contain white dwarfs with quasi-steady shell burning on their surfaces. However, in most symbiotics, the origin of this burning is unclear. In symbiotic slow novae, however, it is linked to a past thermonuclear runaway. In June 2015, the symbiotic slow nova AG Peg was seen in only its second optical outburst since 1850. This recent outburst was of much shorter duration and lower amplitude than the earlier eruption, and it contained multiple peaks -- like outbursts in classical symbiotic stars such as Z And. We report Swift X-ray and UV observations of AG Peg made between June 2015 and January 2016. The X-ray flux was markedly variable on a time scale of days, particularly during four days near optical maximum, when the X-rays became bright and soft. This strong X-ray variability continued for another month, after which the X-rays hardened as the optical flux declined. The UV flux was high throughout the outburst, consistent with quasi-steady shell burning on the white dwarf. Given that accretion disks around white dwarfs with shell burning do not generally produce detectable X-rays (due to Compton-cooling of the boundary layer), the X-rays probably originated via shocks in the ejecta. As the X-ray photo-electric absorption did not vary significantly, the X-ray variability may directly link to the properties of the shocked material. AG Pegs transition from a slow symbiotic nova (which drove the 1850 outburst) to a classical symbiotic star suggests that shell burning in at least some symbiotic stars is residual burning from prior novae.

قيم البحث

اقرأ أيضاً

AG Peg is known as the slowest symbiotic nova, which experienced its nova-like outburst around 1850. After 165 years, during June of 2015, it erupted again showing characteristics of the Z And-type outburst. The primary objective is to determine basi c characteristics, the nature and type of the 2015 outburst of AG Peg. We achieved this aim by modelling the spectral energy distribution using low-resolution spectroscopy (330-750 nm), medium-resolution spectroscopy (420-720 nm; R=11000), and $UBVR_{rm C}I_{rm C}$ photometry covering the 2015 outburst with a high cadence. Optical observations were complemented with the archival HST and FUSE spectra from the preceding quiescence. During the outburst, the luminosity of the hot component was in the range of 2-11$times 10^{37}(d/0.8{rm kpc})^2$ erg/s. To generate the maximum luminosity the white dwarf (WD) had to accrete at $sim 3times 10^{-7}$ M$_{odot}yr^{-1}$, which exceeds the stable-burning limit and thus led to blowing optically thick wind from the WD. We determined its mass-loss rate to a few $times 10^{-6}$ M$_{odot}yr^{-1}$. At the high temperature of the ionising source, $1.5-2.3times 10^5$ K, the wind converted a fraction of the WDs photospheric radiation into the nebular emission that dominated the optical. A one order of magnitude increase of the emission measure, from a few $times 10^{59}(d/0.8 {rm kpc})^2$ cm$^{-3}$ during quiescence, to a few $times 10^{60}(d/0.8,{rm kpc})^2$ cm$^{-3}$ during the outburst, caused a 2 mag brightening in the LC, which is classified as the Z And-type of the outburst. The very high nebular emission and the presence of a disk-like HI region encompassing the WD, as indicated by a significant broadening and high flux of the Raman-scattered OVI 6825 AA line during the outburst, is consistent with the ionisation structure of hot components in symbiotic stars during active phases.
The black-hole binary, V404 Cygni, went into outburst in June 2015, after 26 years of X-ray quiescence. We observed the outburst with the Neil Gehrels Swift observatory. We present optical/UV observations taken with the Swift Ultra-violet Optical Tel escope, and compare them with the X-ray observations obtained with the Swift X-ray Telescope. We find that dust extinction affecting the optical/UV, does not correlate with absorption due to neutral hydrogen that affects the X-ray emission. We suggest there is a small inhomogeneous high density absorber containing a negligible amount of dust, close to the black hole. Overall, temporal variations in the optical/UV appear to trace those in the X-rays. During some epochs we observe an optical time-lag of (15 - 35)s. For both the optical/UV and X-rays, the amplitude of the variations correlates with flux, but this correlation is less significant in the optical/UV. The variability in the light curves may be produced by a complex combination of processes. Some of the X-ray variability may be due to the presence of a local, inhomogeneous and dust-free absorber, while variability visible in both the X-ray and optical/UV may instead be driven by the accretion flow: the X-rays are produced in the inner accretion disc, some of which are reprocessed to the optical/UV; and/or the X-ray and optical/UV emission is produced within the jet.
We present an analysis of the XMM-Newton observation of the symbiotic star AG Peg, obtained after the end of its 2015 outburst. The X-ray emission of AG Peg is soft and of thermal origin. AG Peg is an X-ray source of class beta of the X-ray sources a mongst the symbiotic stars, whose X-ray spectrum is well matched by a two-temperature optically-thin plasma emission (kT_1 ~ 0.14 keV and kT_2 ~ 0.66 keV). The X-ray emission of the class beta sources is believed to originate from colliding stellar winds (CSW) in binary system. If we adopt the CSW picture, the theoretical CSW spectra match well the observed properties of the XMM-Newton spectra of AG Peg. However, we need a solid evidence that a massive-enough hot-star wind is present in the post-outburst state of AG Peg to proof the validity of the CSW picture for this symbiotic binary. No short-term X-ray variability is detected while the UV emission of AG Peg shows stochastic variability (flickering) on time-scales of minutes and hours.
Two long AstroSat Soft X-ray Telescope observations were taken of the third recorded outburst of the Symbiotic Recurrent Nova, V3890 Sgr. The first observing run, 8.1-9.9 days after the outburst, initially showed a stable intensity level with a hard X-ray spectrum that we attribute to shocks between the nova ejecta and the pre-existing stellar companion. On day 8.57, the first, weak, signs appeared of Super Soft Source (SSS) emission powered by residual burning on the surface of the White Dwarf. The SSS emission was observed to be highly variable on time scales of hours. After day 8.9, the SSS component was more stable and brighter. In the second observing run, on days 15.9-19.6 after the outburst, the SSS component was even brighter but still highly variable. The SSS emission was observed to fade significantly during days 16.8-17.8 followed by re-brightening. Meanwhile the shock component was stable leading to increase in hardness ratio during the period of fading. AstroSat and XMM-Newton observations have been used to study the spectral properties of V3890 Sgr to draw quantitative conclusions even if their drawback is model-dependence. We used the xspec to fit spectral models of plasma emission, and the best fits are consistent with the elemental abundances being lower during the second observing run compared to the first for spectra >1 keV. The SSS emission is well fit by non-local thermal equilibrium model atmosphere used for white dwarfs. The resulting spectral parameters, however, are subject to systematic uncertainties such as completeness of atomic data.
78 - N.R. Deacon 2014
Nova Delphini 2013 was identified on the 14th of August 2013 and eventually rose to be a naked eye object. We sought to study the behaviour of the object in the run-up to outburst and to compare it to the pre-outburst photometric characteristics of o ther novae. We searched the Pan-STARRS 1 datastore to identify pre-outburst photometry of Nova Del 2013 and identified twenty-four observations in the 1.2 years before outburst. The progenitor of Nova Delphini showed variability of a few tenths of a magnitude but did not brighten significantly in comparison with archival plate photometry. We also found that the object did not vary significantly on the approximately half hour timescale between pairs of Pan-STARRS 1 observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا