ﻻ يوجد ملخص باللغة العربية
The coincident detection of particles is a powerful method in experimental physics, enabling the investigation of a variety of projectile-target interactions. The vast majority of coincidence experiments is performed with charged particles, as they can be guided by electric or magnetic fields to yield large detection probabilities. When a neutral species or a photon is one of the particles recorded in coincidence, its detection probability typically suffers from small solid angles. Here, we present two optical assemblies considerably enhancing the solid angle for EUV to VIS photon detection. The efficiency and versatility of these assemblies is demonstrated for electron-photon coincidence detection, where electrons and photons emerge from fundamental processes after photoexcitation of gaseous samples by synchrotron radiation.
We give an analytic treatment of the time resolution and efficiency of Single Photon Avalanche Diodes (SPADs) and Silicon Photomultipliers (SiPMs). We provide closed-form expressions for structures with uniform electric fields and efficient numerical
We report on the design and performance of a double-sided coincidence velocity map imaging spectrometer optimized for electron-ion and ion-ion coincidence experiments studying inner-shell photoionization of gas-phase molecules with soft X-ray synchro
We have constructed and tested a novel plastic-scintillator-based solid-state active proton target for use in nuclear spectroscopic studies with nuclear reactions induced by an ion beam in inverse kinematics. The active target system, named Stack Str
Recently, we reported the commissioning of the new cryogenic ion storage ring RICE, which demonstrated potential capabilities for the precise studies of molecular structures and reaction dynamics. In the present article, we describe the status of exp
The MUGAST-AGATA-VAMOS set-up at GANIL combines the MUGAST highly-segmented silicon array with the state-of-the-art AGATA array and the large acceptance VAMOS spectrometer. The mechanical and electronics integration copes with the constraints of maxi