ترغب بنشر مسار تعليمي؟ اضغط هنا

The MUGAST-AGATA-VAMOS campaign : set-up and performance

193   0   0.0 ( 0 )
 نشر من قبل Marl\\`ene Assi\\'e
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The MUGAST-AGATA-VAMOS set-up at GANIL combines the MUGAST highly-segmented silicon array with the state-of-the-art AGATA array and the large acceptance VAMOS spectrometer. The mechanical and electronics integration copes with the constraints of maximum efficiency for each device, in particular {gamma}-ray transparency for the silicon array. This complete set-up offers a unique opportunity to perform exclusive measurements of direct reactions with the radioactive beams from the SPIRAL1 facility. The performance of the set-up is described through its commissioning and two examples of transfer reactions measured during the campaign. High accuracy spectroscopy of the nuclei of interest, including cross-sections and angular distributions, is achieved through the triple-coincidence measurement. In addition, the correction from Doppler effect of the {gamma}-ray energies is improved by the detection of the light particles and the use of two-body kinematics and a full rejection of the background contributions is obtained through the identification of heavy residues. Moreover, the system can handle high intensity beams (up to 108 pps). The particle identification based on the measurement of the time-of-flight between MUGAST and VAMOS and the reconstruction of the trajectories is investigated.

قيم البحث

اقرأ أيضاً

The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation gamma-ray spectrometer. AGATA is based on the technique of gamma-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a gamma ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realization of gamma-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly-segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterization of the crystals was measured and compared with detector-response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximize its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer.
Fission and gamma-emission probabilities induced by transfer or inelastic scattering reactions with light projectile nuclei are very valuable quantities for constraining the models that describe the de-excitation of heavy nuclei. We have developed an experimental set-up that allows us to simultaneously measure fission and gamma-emission probabilities. The measurement of the gamma-emission probability at excitation energies where the fission channel is open is challenging due to the intense background of gamma rays emitted by the fission fragments. We discuss the procedure to subtract such a background and the constraints that this subtraction and other experimental conditions put on the set up. We show that our set-up complies with these constraints.
146 - M. Bruno , F. Gramegna , T. Marchi 2013
An upgraded GARFIELD + Ring Counter (RCo) apparatus is presented with improved performances as far as electronics and detectors are concerned. On one side fast sampling digital read out has been extended to all detectors, allowing for an important si mplification of the signal processing chain together with an enriched extracted information. On the other side a relevant improvement has been made in the forward part of the setup (RCo): an increased granularity of the CsI(Tl) crystals and a higher homogeneity in the silicon detector resistivity. The renewed performances of the GARFIELD + RCo array make it suitable for nuclear reaction measurements both with stable and with Radioactive Ion Beams (RIB), like the ones foreseen for the SPES facility, where the Physics of Isospin can be studied.
The neutron sensitivity of the C$_6$D$_6$ detector setup used at n_TOF for capture measurements has been studied by means of detailed GEANT4 simulations. A realistic software replica of the entire n_TOF experimental hall, including the neutron beam l ine, sample, detector supports and the walls of the experimental area has been implemented in the simulations. The simulations have been analyzed in the same manner as experimental data, in particular by applying the Pulse Height Weighting Technique. The simulations have been validated against a measurement of the neutron background performed with a $^mathrm{nat}$C sample, showing an excellent agreement above 1 keV. At lower energies, an additional component in the measured $^mathrm{nat}$C yield has been discovered, which prevents the use of $^mathrm{nat}$C data for neutron background estimates at neutron energies below a few hundred eV. The origin and time structure of the neutron background have been derived from the simulations. Examples of the neutron background for two different samples are demonstrating the important role of accurate simulations of the neutron background in capture cross section measurements.
DTAS is a segmented total absorption {gamma}-ray spectrometer developed for the DESPEC experiment at FAIR. It is composed of up to eighteen NaI(Tl) crystals. In this work we study the performance of this detector with laboratory sources and also unde r real experimental conditions. We present a procedure to reconstruct offline the sum of the energy deposited in all the crystals of the spectrometer, which is complicated by the effect of NaI(Tl) light-yield non-proportionality. The use of a system to correct for time variations of the gain in individual detector modules, based on a light pulse generator, is demonstrated. We describe also an event-based method to evaluate the summing-pileup electronic distortion in segmented spectrometers. All of this allows a careful characterization of the detector with Monte Carlo simulations that is needed to calculate the response function for the analysis of total absorption {gamma}-ray spectroscopy data. Special attention was paid to the interaction of neutrons with the spectrometer, since they are a source of contamination in studies of b{eta}-delayed neutron emitting nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا