ترغب بنشر مسار تعليمي؟ اضغط هنا

Decomposed Structured Subsets for Semidefinite and Sum-of-Squares Optimization

78   0   0.0 ( 0 )
 نشر من قبل Jared Miller
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Semidefinite programs (SDPs) are standard convex problems that are frequently found in control and optimization applications. Interior-point methods can solve SDPs in polynomial time up to arbitrary accuracy, but scale poorly as the size of matrix variables and the number of constraints increases. To improve scalability, SDPs can be approximated with lower and upper bounds through the use of structured subsets (e.g., diagonally-dominant and scaled-diagonally dominant matrices). Meanwhile, any underlying sparsity or symmetry structure may be leveraged to form an equivalent SDP with smaller positive semidefinite constraints. In this paper, we present a notion of decomposed structured subsets}to approximate an SDP with structured subsets after an equivalent conversion. The lower/upper bounds found by approximation after conversion become tighter than the bounds obtained by approximating the original SDP directly. We apply decomposed structured subsets to semidefinite and sum-of-squares optimization problems with examples of H-infinity norm estimation and constrained polynomial optimization. An existing basis pursuit method is adapted into this framework to iteratively refine bounds.

قيم البحث

اقرأ أيضاً

Semidefinite and sum-of-squares (SOS) optimization are fundamental computational tools in many areas, including linear and nonlinear systems theory. However, the scale of problems that can be addressed reliably and efficiently is still limited. In th is paper, we introduce a new notion of emph{block factor-width-two matrices} and build a new hierarchy of inner and outer approximations of the cone of positive semidefinite (PSD) matrices. This notion is a block extension of the standard factor-width-two matrices, and allows for an improved inner-approximation of the PSD cone. In the context of SOS optimization, this leads to a block extension of the emph{scaled diagonally dominant sum-of-squares (SDSOS)} polynomials. By varying a matrix partition, the notion of block factor-width-two matrices can balance a trade-off between the computation scalability and solution quality for solving semidefinite and SOS optimization. Numerical experiments on large-scale instances confirm our theoretical findings.
Chordal and factor-width decomposition methods for semidefinite programming and polynomial optimization have recently enabled the analysis and control of large-scale linear systems and medium-scale nonlinear systems. Chordal decomposition exploits th e sparsity of semidefinite matrices in a semidefinite program (SDP), in order to formulate an equivalent SDP with smaller semidefinite constraints that can be solved more efficiently. Factor-width decompositions, instead, relax or strengthen SDPs with dense semidefinite matrices into more tractable problems, trading feasibility or optimality for lower computational complexity. This article reviews recent advances in large-scale semidefinite and polynomial optimization enabled by these two types of decomposition, highlighting connections and differences between them. We also demonstrate that chordal and factor-width decompositions allow for significant computational savings on a range of classical problems from control theory, and on more recent problems from machine learning. Finally, we outline possible directions for future research that have the potential to facilitate the efficient optimization-based study of increasingly complex large-scale dynamical systems.
We introduce a new framework for unifying and systematizing the performance analysis of first-order black-box optimization algorithms for unconstrained convex minimization. The low-cost iteration complexity enjoyed by first-order algorithms renders t hem particularly relevant for applications in machine learning and large-scale data analysis. Relying on sum-of-squares (SOS) optimization, we introduce a hierarchy of semidefinite programs that give increasingly better convergence bounds for higher levels of the hierarchy. Alluding to the power of the SOS hierarchy, we show that the (dual of the) first level corresponds to the Performance Estimation Problem (PEP) introduced by Drori and Teboulle [Math. Program., 145(1):451--482, 2014], a powerful framework for determining convergence rates of first-order optimization algorithms. Consequently, many results obtained within the PEP framework can be reinterpreted as degree-1 SOS proofs, and thus, the SOS framework provides a promising new approach for certifying improved rates of convergence by means of higher-order SOS certificates. To determine analytical rate bounds, in this work we use the first level of the SOS hierarchy and derive new result{s} for noisy gradient descent with inexact line search methods (Armijo, Wolfe, and Goldstein).
SOSTOOLS v3.00 is the latest release of the freely available MATLAB toolbox for formulating and solving sum of squares (SOS) optimization problems. Such problems arise naturally in the analysis and control of nonlinear dynamical systems, but also in other areas such as combinatorial optimization. Highlights of the new release include the ability to create polynomial matrices and formulate polynomial matrix inequalities, compatibility with MuPAD, the new MATLAB symbolic engine, as well as the multipoly toolbox v2.01. SOSTOOLS v3.00 can interface with five semidefinite programming solvers, and includes ten demonstration examples.
This paper deals with the fault detection and isolation (FDI) problem for linear structured systems in which the system matrices are given by zero/nonzero/arbitrary pattern matrices. In this paper, we follow a geometric approach to verify solvability of the FDI problem for such systems. To do so, we first develop a necessary and sufficient condition under which the FDI problem for a given particular linear time-invariant system is solvable. Next, we establish a necessary condition for solvability of the FDI problem for linear structured systems. In addition, we develop a sufficient algebraic condition for solvability of the FDI problem in terms of a rank test on an associated pattern matrix. To illustrate that this condition is not necessary, we provide a counterexample in which the FDI problem is solvable while the condition is not satisfied. Finally, we develop a graph-theoretic condition for the full rank property of a given pattern matrix, which leads to a graph-theoretic condition for solvability of the FDI problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا