ﻻ يوجد ملخص باللغة العربية
The development of parametric instabilities in a large scale inhomogeneous plasma with an incident laser beam composed of multiple-frequency components is studied theoretically and numerically. Firstly, theoretical analyses of the coupling between two laser beamlets with certain frequency difference $deltaomega_0$ for parametric instabilities is presented. It suggests that the two beamlets will be decoupled when $deltaomega_0$ is larger than certain thresholds, which are derived for stimulated Raman scattering (SRS), stimulated Brillouin scattering (SBS), and two plasmon decay (TPD), respectively. In this case, the parametric instabilities for the two beamlets develop independently and can be controlled at a low level provided the laser intensity for individual beamlet is low enough. Secondly, numerical simulations of parametric instabilities with two or more beamlets ($Nsim20$) have been carried out and the above theory model is validated. Simulations confirm that the development of parametric instabilities with multiple beamlets can be controlled at a low level, provided the threshold conditions for $deltaomega_0$ is satisfied, even though the total laser intensity is as high as $sim10^{15}$W/cm$^2$. With such a laser beam structure of multiple frequency components ($Ngtrsim20$) and total bandwidth of a few percentages ($gtrsim4%$), the parametric instabilities can be well-controlled.
Parametric instabilities driven by partially coherent radiation in plasmas are described by a generalized statistical Wigner-Moyal set of equations, formally equivalent to the full wave equation, coupled to the plasma fluid equations. A generalized d
Electronic parametric instabilities of an ultrarelativistic circularly polarized laser pulse propagating in underdense plasmas are studied by numerically solving the dispersion relation which includes the effect of the radiation reaction force in las
A method for the controlled generation of intense high frequency electromagnetic fields by a breaking Langmuir wave (relativistic flying mirrors) in a gradually inhomogeneous plasma is proposed. The wave breaking threshold depends on the local plasma
The effect on parametric instability growth of pump wave incoherence is treated by deriving a set of equations governing the space-time evolution of the ensemble-average coupled-mode amplitudes and intensities. Particular attention is paid to establi
We study the effects of heat flows and velocity shear on the parallel firehose instability in weakly collisional plasma flow. For this purpose we apply an anisotropic 16-moments MHD fluid closure model that takes into account the pressure and tempera