ﻻ يوجد ملخص باللغة العربية
Parametric instabilities driven by partially coherent radiation in plasmas are described by a generalized statistical Wigner-Moyal set of equations, formally equivalent to the full wave equation, coupled to the plasma fluid equations. A generalized dispersion relation for Stimulated Raman Scattering driven by a partially coherent pump field is derived, revealing a growth rate dependence, with the coherence width $sigma$ of the radiation field, scaling with $1/sigma$ for backscattering (three-wave process), and with $1/sigma^{1/2}$ for direct forward scattering (four-wave process). Our results demonstrate the possibility to control the growth rates of these instabilities by properly using broadband pump radiation fields.
The development of parametric instabilities in a large scale inhomogeneous plasma with an incident laser beam composed of multiple-frequency components is studied theoretically and numerically. Firstly, theoretical analyses of the coupling between tw
New class instabilities is identified in Hall plasmas in configurations with open magnetic field lines. It is shown that sheath resistivity results in a robust instability driven by the equilibrium electric field. It is conjectured that these instabi
Electronic parametric instabilities of an ultrarelativistic circularly polarized laser pulse propagating in underdense plasmas are studied by numerically solving the dispersion relation which includes the effect of the radiation reaction force in las
Counterstreaming plasma structures are widely present in laboratory experiments and astrophysical systems, and they are investigated either to prevent unstable modes arising in beam-plasma experiments or to prove the existence of large scale magnetic
The effect on parametric instability growth of pump wave incoherence is treated by deriving a set of equations governing the space-time evolution of the ensemble-average coupled-mode amplitudes and intensities. Particular attention is paid to establi