ترغب بنشر مسار تعليمي؟ اضغط هنا

Robustness for Non-Parametric Classification: A Generic Attack and Defense

66   0   0.0 ( 0 )
 نشر من قبل Yao-Yuan Yang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Adversarially robust machine learning has received much recent attention. However, prior attacks and defenses for non-parametric classifiers have been developed in an ad-hoc or classifier-specific basis. In this work, we take a holistic look at adversarial examples for non-parametric classifiers, including nearest neighbors, decision trees, and random forests. We provide a general defense method, adversarial pruning, that works by preprocessing the dataset to become well-separated. To test our defense, we provide a novel attack that applies to a wide range of non-parametric classifiers. Theoretically, we derive an optimally robust classifier, which is analogous to the Bayes Optimal. We show that adversarial pruning can be viewed as a finite sample approximation to this optimal classifier. We empirically show that our defense and attack are either better than or competitive with prior work on non-parametric classifiers. Overall, our results provide a strong and broadly-applicable baseline for future work on robust non-parametrics. Code available at https://github.com/yangarbiter/adversarial-nonparametrics/ .

قيم البحث

اقرأ أيضاً

We demonstrate a backdoor attack on a deep neural network used for regression. The backdoor attack is localized based on training-set data poisoning wherein the mislabeled samples are surrounded by correctly labeled ones. We demonstrate how such loca lization is necessary for attack success. We also study the performance of a backdoor defense using gradient-based discovery of local error maximizers. Local error maximizers which are associated with significant (interpolation) error, and are proximal to many training samples, are suspicious. This method is also used to accurately train for deep regression in the first place by active (deep) learning leveraging an oracle capable of providing real-valued supervision (a regression target) for samples. Such oracles, including traditional numerical solvers of PDEs or SDEs using finite difference or Monte Carlo approximations, are far more computationally costly compared to deep regression.
236 - Kaidi Xu , Hongge Chen , Sijia Liu 2019
Graph neural networks (GNNs) which apply the deep neural networks to graph data have achieved significant performance for the task of semi-supervised node classification. However, only few work has addressed the adversarial robustness of GNNs. In thi s paper, we first present a novel gradient-based attack method that facilitates the difficulty of tackling discrete graph data. When comparing to current adversarial attacks on GNNs, the results show that by only perturbing a small number of edge perturbations, including addition and deletion, our optimization-based attack can lead to a noticeable decrease in classification performance. Moreover, leveraging our gradient-based attack, we propose the first optimization-based adversarial training for GNNs. Our method yields higher robustness against both different gradient based and greedy attack methods without sacrificing classification accuracy on original graph.
Graph deep learning models, such as graph convolutional networks (GCN) achieve remarkable performance for tasks on graph data. Similar to other types of deep models, graph deep learning models often suffer from adversarial attacks. However, compared with non-graph data, the discrete features, graph connections and different definitions of imperceptible perturbations bring unique challenges and opportunities for the adversarial attacks and defenses for graph data. In this paper, we propose both attack and defense techniques. For attack, we show that the discreteness problem could easily be resolved by introducing integrated gradients which could accurately reflect the effect of perturbing certain features or edges while still benefiting from the parallel computations. For defense, we observe that the adversarially manipulated graph for the targeted attack differs from normal graphs statistically. Based on this observation, we propose a defense approach which inspects the graph and recovers the potential adversarial perturbations. Our experiments on a number of datasets show the effectiveness of the proposed methods.
Despite of the pervasive existence of multi-label evasion attack, it is an open yet essential problem to characterize the origin of the adversarial vulnerability of a multi-label learning system and assess its attackability. In this study, we focus o n non-targeted evasion attack against multi-label classifiers. The goal of the threat is to cause miss-classification with respect to as many labels as possible, with the same input perturbation. Our work gains in-depth understanding about the multi-label adversarial attack by first characterizing the transferability of the attack based on the functional properties of the multi-label classifier. We unveil how the transferability level of the attack determines the attackability of the classifier via establishing an information-theoretic analysis of the adversarial risk. Furthermore, we propose a transferability-centered attackability assessment, named Soft Attackability Estimator (SAE), to evaluate the intrinsic vulnerability level of the targeted multi-label classifier. This estimator is then integrated as a transferability-tuning regularization term into the multi-label learning paradigm to achieve adversarially robust classification. The experimental study on real-world data echos the theoretical analysis and verify the validity of the transferability-regularized multi-label learning method.
Todays state-of-the-art image classifiers fail to correctly classify carefully manipulated adversarial images. In this work, we develop a new, localized adversarial attack that generates adversarial examples by imperceptibly altering the backgrounds of normal images. We first use this attack to highlight the unnecessary sensitivity of neural networks to changes in the background of an image, then use it as part of a new training technique: localized adversarial training. By including locally adversarial images in the training set, we are able to create a classifier that suffers less loss than a non-adversarially trained counterpart model on both natural and adversarial inputs. The evaluation of our localized adversarial training algorithm on MNIST and CIFAR-10 datasets shows decreased accuracy loss on natural images, and increased robustness against adversarial inputs.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا