ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Compositional Spatial Models

99   0   0.0 ( 0 )
 نشر من قبل Andrew Zammit-Mangion
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Spatial processes with nonstationary and anisotropic covariance structure are often used when modelling, analysing and predicting complex environmental phenomena. Such processes may often be expressed as ones that have stationary and isotropic covariance structure on a warped spatial domain. However, the warping function is generally difficult to fit and not constrained to be injective, often resulting in `space-folding. Here, we propose modelling an injective warping function through a composition of multiple elemental injective functions in a deep-learning framework. We consider two cases; first, when these functions are known up to some weights that need to be estimated, and, second, when the weights in each layer are random. Inspired by recent methodological and technological advances in deep learning and deep Gaussian processes, we employ approximate Bayesian methods to make inference with these models using graphics processing units. Through simulation studies in one and two dimensions we show that the deep compositional spatial models are quick to fit, and are able to provide better predictions and uncertainty quantification than other deep stochastic models of similar complexity. We also show their remarkable capacity to model nonstationary, anisotropic spatial data using radiances from the MODIS instrument aboard the Aqua satellite.



قيم البحث

اقرأ أيضاً

We use the theory of normal variance-mean mixtures to derive a data augmentation scheme for models that include gamma functions. Our methodology applies to many situations in statistics and machine learning, including Multinomial-Dirichlet distributi ons, Negative binomial regression, Poisson-Gamma hierarchical models, Extreme value models, to name but a few. All of those models include a gamma function which does not admit a natural conjugate prior distribution providing a significant challenge to inference and prediction. To provide a data augmentation strategy, we construct and develop the theory of the class of Exponential Reciprocal Gamma distributions. This allows scalable EM and MCMC algorithms to be developed. We illustrate our methodology on a number of examples, including gamma shape inference, negative binomial regression and Dirichlet allocation. Finally, we conclude with directions for future research.
Applications such as the analysis of microbiome data have led to renewed interest in statistical methods for compositional data, i.e., multivariate data in the form of probability vectors that contain relative proportions. In particular, there is con siderable interest in modeling interactions among such relative proportions. To this end we propose a class of exponential family models that accommodate general patterns of pairwise interaction while being supported on the probability simplex. Special cases include the family of Dirichlet distributions as well as Aitchisons additive logistic normal distributions. Generally, the distributions we consider have a density that features a difficult to compute normalizing constant. To circumvent this issue, we design effective estimation methods based on generaliz
Approximate Bayesian Computation (ABC) methods are used to approximate posterior distributions in models with unknown or computationally intractable likelihoods. Both the accuracy and computational efficiency of ABC depend on the choice of summary st atistic, but outside of special cases where the optimal summary statistics are known, it is unclear which guiding principles can be used to construct effective summary statistics. In this paper we explore the possibility of automating the process of constructing summary statistics by training deep neural networks to predict the parameters from artificially generated data: the resulting summary statistics are approximately posterior means of the parameters. With minimal model-specific tuning, our method constructs summary statistics for the Ising model and the moving-average model, which match or exceed theoretically-motivated summary statistics in terms of the accuracies of the resulting posteriors.
133 - Matthias Katzfuss 2015
Automated sensing instruments on satellites and aircraft have enabled the collection of massive amounts of high-resolution observations of spatial fields over large spatial regions. If these datasets can be efficiently exploited, they can provide new insights on a wide variety of issues. However, traditional spatial-statistical techniques such as kriging are not computationally feasible for big datasets. We propose a multi-resolution approximation (M-RA) of Gaussian processes observed at irregular locations in space. The M-RA process is specified as a linear combination of basis functions at multiple levels of spatial resolution, which can capture spatial structure from very fine to very large scales. The basis functions are automatically chosen to approximate a given covariance function, which can be nonstationary. All computations involving the M-RA, including parameter inference and prediction, are highly scalable for massive datasets. Crucially, the inference algorithms can also be parallelized to take full advantage of large distributed-memory computing environments. In comparisons using simulated data and a large satellite dataset, the M-RA outperforms a related state-of-the-art method.
Gaussian processes are popular and flexible models for spatial, temporal, and functional data, but they are computationally infeasible for large datasets. We discuss Gaussian-process approximations that use basis functions at multiple resolutions to achieve fast inference and that can (approximately) represent any spatial covariance structure. We consider two special cases of this multi-resolution-approximation framework, a taper version and a domain-partitioning (block) version. We describe theoretical properties and inference procedures, and study the computational complexity of the methods. Numerical comparisons and an application to satellite data are also provided.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا