ﻻ يوجد ملخص باللغة العربية
Gaussian processes are popular and flexible models for spatial, temporal, and functional data, but they are computationally infeasible for large datasets. We discuss Gaussian-process approximations that use basis functions at multiple resolutions to achieve fast inference and that can (approximately) represent any spatial covariance structure. We consider two special cases of this multi-resolution-approximation framework, a taper version and a domain-partitioning (block) version. We describe theoretical properties and inference procedures, and study the computational complexity of the methods. Numerical comparisons and an application to satellite data are also provided.
Automated sensing instruments on satellites and aircraft have enabled the collection of massive amounts of high-resolution observations of spatial fields over large spatial regions. If these datasets can be efficiently exploited, they can provide new
Large, non-Gaussian spatial datasets pose a considerable modeling challenge as the dependence structure implied by the model needs to be captured at different scales, while retaining feasible inference. Skew-normal and skew-t distributions have only
Generalized Gaussian processes (GGPs) are highly flexible models that combine latent GPs with potentially non-Gaussian likelihoods from the exponential family. GGPs can be used in a variety of settings, including GP classification, nonparametric coun
This paper introduces a framework for speeding up Bayesian inference conducted in presence of large datasets. We design a Markov chain whose transition kernel uses an (unknown) fraction of (fixed size) of the available data that is randomly refreshed
Spatio-temporal data sets are rapidly growing in size. For example, environmental variables are measured with ever-higher resolution by increasing numbers of automated sensors mounted on satellites and aircraft. Using such data, which are typically n