ترغب بنشر مسار تعليمي؟ اضغط هنا

Slack Channels Ecology in Enterprises: How Employees Collaborate Through Group Chat

43   0   0.0 ( 0 )
 نشر من قبل Dakuo Wang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite the long history of studying instant messaging usage in organizations, we know very little about how todays people participate in group chat channels and interact with others. In this short note, we aim to update the existing knowledge on how group chat is used in the context of todays organizations. We have the privilege of collecting a total of 4300 publicly available group chat channels in Slack from an R&D department in a multinational IT company. Through qualitative coding of 100 channels, we identified 9 channel categories such as project based channels and event channels. We further defined a feature metric with 21 features to depict the group communication style for these group chat channels, with which we successfully trained a machine learning model that can automatically classify a given group channel into one of the 9 categories. In addition, we illustrated how these communication metrics could be used for analyzing teams collaboration activities. We focused on 117 project teams as we have their performance data, and further collected 54 out of the 117 teams Slack group data and generated the communication style metrics for each of them. With these data, we are able to build a regression model to reveal the relationship between these group communication styles and one indicator of the project team performance.



قيم البحث

اقرأ أيضاً

Today, the prominence of data science within organizations has given rise to teams of data science workers collaborating on extracting insights from data, as opposed to individual data scientists working alone. However, we still lack a deep understan ding of how data science workers collaborate in practice. In this work, we conducted an online survey with 183 participants who work in various aspects of data science. We focused on their reported interactions with each other (e.g., managers with engineers) and with different tools (e.g., Jupyter Notebook). We found that data science teams are extremely collaborative and work with a variety of stakeholders and tools during the six common steps of a data science workflow (e.g., clean data and train model). We also found that the collaborative practices workers employ, such as documentation, vary according to the kinds of tools they use. Based on these findings, we discuss design implications for supporting data science team collaborations and future research directions.
Standard approaches to the theory of financial markets are based on equilibrium and efficiency. Here we develop an alternative based on concepts and methods developed by biologists, in which the wealth invested in a financial strategy is like the abu ndance of a species. We study a toy model of a market consisting of value investors, trend followers and noise traders. We show that the average returns of strategies are strongly density dependent, i.e. they depend on the wealth invested in each strategy at any given time. In the absence of noise the market would slowly evolve toward an efficient equilibrium, but the statistical uncertainty in profitability (which is adjusted to match real markets) makes this noisy and uncertain. Even in the long term, the market spends extended periods of time away from perfect efficiency. We show how core concepts from ecology, such as the community matrix and food webs, give insight into market behavior. The wealth dynamics of the market ecology explain how market inefficiencies spontaneously occur and gives insight into the origins of excess price volatility and deviations of prices from fundamental values.
Organizations are rapidly deploying artificial intelligence (AI) systems to manage their workers. However, AI has been found at times to be unfair to workers. Unfairness toward workers has been associated with decreased worker effort and increased wo rker turnover. To avoid such problems, AI systems must be designed to support fairness and redress instances of unfairness. Despite the attention related to AI unfairness, there has not been a theoretical and systematic approach to developing a design agenda. This paper addresses the issue in three ways. First, we introduce the organizational justice theory, three different fairness types (distributive, procedural, interactional), and the frameworks for redressing instances of unfairness (retributive justice, restorative justice). Second, we review the design literature that specifically focuses on issues of AI fairness in organizations. Third, we propose a design agenda for AI fairness in organizations that applies each of the fairness types to organizational scenarios. Then, the paper concludes with implications for future research.
It is becoming increasingly clear that users should own and control their data. Utility providers are also becoming more interested in guaranteeing data privacy. As such, users and utility providers should collaborate in data privacy, a paradigm that has not yet been developed in the privacy research community. We introduce this concept and present explicit architectures where the user controls what characteristics of the data she/he wants to share and what she/he wants to keep private. This is achieved by collaborative learning a sensitization function, either a deterministic or a stochastic one, that retains valuable information for the utility tasks but it also eliminates necessary information for the privacy ones. As illustration examples, we implement them using a plug-and-play approach, where no algorithm is changed at the system provider end, and an adversarial approach, where minor re-training of the privacy inferring engine is allowed. In both cases the learned sanitization function keeps the data in the original domain, thereby allowing the system to use the same algorithms it was using before for both original and privatized data. We show how we can maintain utility while fully protecting private information if the user chooses to do so, even when the first is harder than the second, as in the case here illustrated of identity detection while hiding gender.
In this paper authors are going to present a Markov Decision Process (MDP) based algorithm in Industrial Internet of Things (IIoT) as a safety compliance layer for human in loop system. Though some industries are moving towards Industry 4.0 and attem pting to automate the systems as much as possible by using robots, still human in loop systems are very common in developing countries like India. When ever there is a need for human machine interaction, there is a scope of health hazard. In this work we have developed a system for one such industry using MDP. The proposed algorithm used in this system learned the probability of state transition from experience as well as the system is adaptable to new changes by incorporating the concept of transfer learning. The system was evaluated on the data set obtained from 39 sensors connected to a computer numerically controlled (CNC) machine pushing data every second in a 24x7 scenario. The state changes are typically instructed by a human which subsequently lead to some intentional or unintentional mistakes and errors. The proposed system raises an alarm for the operator to warn which he may or may not overlook depending on his own perception about the present condition of the system. Repeated ignorance of the operator for a particular state transition warning guides the system to retrain the model. We observed 95.61% alarms raised by the said system are taken care of by the operator. 3.2% alarms are coming from the changes in the system which in turn used to retrain the model and 1.19% alarms are false alarms. We could not compute the error coming from the mistake performed by the human operator as there is no ground truth available for that.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا