ترغب بنشر مسار تعليمي؟ اضغط هنا

Yelp Review Rating Prediction: Machine Learning and Deep Learning Models

299   0   0.0 ( 0 )
 نشر من قبل Zefang Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Zefang Liu




اسأل ChatGPT حول البحث

We predict restaurant ratings from Yelp reviews based on Yelp Open Dataset. Data distribution is presented, and one balanced training dataset is built. Two vectorizers are experimented for feature engineering. Four machine learning models including Naive Bayes, Logistic Regression, Random Forest, and Linear Support Vector Machine are implemented. Four transformer-based models containing BERT, DistilBERT, RoBERTa, and XLNet are also applied. Accuracy, weighted F1 score, and confusion matrix are used for model evaluation. XLNet achieves 70% accuracy for 5-star classification compared with Logistic Regression with 64% accuracy.



قيم البحث

اقرأ أيضاً

100 - Siqi Liu 2020
We use over 350,000 Yelp reviews on 5,000 restaurants to perform an ablation study on text preprocessing techniques. We also compare the effectiveness of several machine learning and deep learning models on predicting user sentiment (negative, neutra l, or positive). For machine learning models, we find that using binary bag-of-word representation, adding bi-grams, imposing minimum frequency constraints and normalizing texts have positive effects on model performance. For deep learning models, we find that using pre-trained word embeddings and capping maximum length often boost model performance. Finally, using macro F1 score as our comparison metric, we find simpler models such as Logistic Regression and Support Vector Machine to be more effective at predicting sentiments than more complex models such as Gradient Boosting, LSTM and BERT.
The Bangla language is the seventh most spoken language, with 265 million native and non-native speakers worldwide. However, English is the predominant language for online resources and technical knowledge, journals, and documentation. Consequently, many Bangla-speaking people, who have limited command of English, face hurdles to utilize English resources. To bridge the gap between limited support and increasing demand, researchers conducted many experiments and developed valuable tools and techniques to create and process Bangla language materials. Many efforts are also ongoing to make it easy to use the Bangla language in the online and technical domains. There are some review papers to understand the past, previous, and future Bangla Natural Language Processing (BNLP) trends. The studies are mainly concentrated on the specific domains of BNLP, such as sentiment analysis, speech recognition, optical character recognition, and text summarization. There is an apparent scarcity of resources that contain a comprehensive study of the recent BNLP tools and methods. Therefore, in this paper, we present a thorough review of 71 BNLP research papers and categorize them into 11 categories, namely Information Extraction, Machine Translation, Named Entity Recognition, Parsing, Parts of Speech Tagging, Question Answering System, Sentiment Analysis, Spam and Fake Detection, Text Summarization, Word Sense Disambiguation, and Speech Processing and Recognition. We study articles published between 1999 to 2021, and 50% of the papers were published after 2015. We discuss Classical, Machine Learning and Deep Learning approaches with different datasets while addressing the limitations and current and future trends of the BNLP.
The proliferation of fake news and its propagation on social media has become a major concern due to its ability to create devastating impacts. Different machine learning approaches have been suggested to detect fake news. However, most of those focu sed on a specific type of news (such as political) which leads us to the question of dataset-bias of the models used. In this research, we conducted a benchmark study to assess the performance of different applicable machine learning approaches on three different datasets where we accumulated the largest and most diversified one. We explored a number of advanced pre-trained language models for fake news detection along with the traditional and deep learning ones and compared their performances from different aspects for the first time to the best of our knowledge. We find that BERT and similar pre-trained models perform the best for fake news detection, especially with very small dataset. Hence, these models are significantly better option for languages with limited electronic contents, i.e., training data. We also carried out several analysis based on the models performance, articles topic, articles length, and discussed different lessons learned from them. We believe that this benchmark study will help the research community to explore further and news sites/blogs to select the most appropriate fake news detection method.
Authorship identification is a process in which the author of a text is identified. Most known literary texts can easily be attributed to a certain author because they are, for example, signed. Yet sometimes we find unfinished pieces of work or a who le bunch of manuscripts with a wide variety of possible authors. In order to assess the importance of such a manuscript, it is vital to know who wrote it. In this work, we aim to develop a machine learning framework to effectively determine authorship. We formulate the task as a single-label multi-class text categorization problem and propose a supervised machine learning framework incorporating stylometric features. This task is highly interdisciplinary in that it takes advantage of machine learning, information retrieval, and natural language processing. We present an approach and a model which learns the differences in writing style between $50$ different authors and is able to predict the author of a new text with high accuracy. The accuracy is seen to increase significantly after introducing certain linguistic stylometric features along with text features.
Showing items that do not match search query intent degrades customer experience in e-commerce. These mismatches result from counterfactual biases of the ranking algorithms toward noisy behavioral signals such as clicks and purchases in the search lo gs. Mitigating the problem requires a large labeled dataset, which is expensive and time-consuming to obtain. In this paper, we develop a deep, end-to-end model that learns to effectively classify mismatches and to generate hard mismatched examples to improve the classifier. We train the model end-to-end by introducing a latent variable into the cross-entropy loss that alternates between using the real and generated samples. This not only makes the classifier more robust but also boosts the overall ranking performance. Our model achieves a relative gain compared to baselines by over 26% in F-score, and over 17% in Area Under PR curve. On live search traffic, our model gains significant improvement in multiple countries.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا